Design of Ultra-Wideband, Aperiodic Antenna Arrays With the CMA Evolutionary Strategy

Recently, the covariance matrix adaption evolutionary strategy (CMA-ES) has received attention for outperforming conventional global optimization techniques such as the genetic algorithm (GA) or particle swarm optimization (PSO), often used in electromagnetic designs. Here, CMA-ES is first applied to the design of ultra-wideband aperiodic arrays using realistic spiral radiating elements. To improve the axial ratio of the array, optimization was extended to incorporate a mechanical rotation of each spiral element. This novel strategy of optimizing both the location and rotation of each element provides noticeable improvement in both the axial ratio and sidelobe level performance.

[1]  R. Bawer,et al.  The spiral antenna , 1960 .

[2]  A. Ishimaru,et al.  Thinning and broadbanding antenna arrays by unequal spacings , 1965 .

[3]  A. Prata,et al.  Archimedean spiral-mode microstrip antenna with improved axial ratio , 1999, IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010).

[4]  D. H. Werner,et al.  Design of high performance compact linear ultra-wideband arrays with the CMA evolutionary strategy , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[5]  J.S. Petko,et al.  An Autopolyploidy-Based Genetic Algorithm for Enhanced Evolution of Linear Polyfractal Arrays , 2007, IEEE Transactions on Antennas and Propagation.

[6]  V. Agrawal,et al.  Mutual coupling in phased arrays of randomly spaced antennas , 1972 .

[7]  V. Rumsey Frequency independent antennas , 1966 .

[8]  Y. T. Lo,et al.  A mathematical theory of antenna arrays with randomly spaced elements , 1964 .

[9]  R. Kindt,et al.  Ultrawideband All-Metal Flared-Notch Array Radiator , 2010, IEEE Transactions on Antennas and Propagation.

[10]  Herbert Aumann,et al.  Polarization ratio improvement in a spiral element array , 2009, 2009 IEEE Antennas and Propagation Society International Symposium.

[11]  D. King,et al.  Unequally-spaced, broad-band antenna arrays , 1960 .

[12]  M D Gregory,et al.  Fast Optimization of Electromagnetic Design Problems Using the Covariance Matrix Adaptation Evolutionary Strategy , 2011, IEEE Transactions on Antennas and Propagation.

[13]  I. Introductiok,et al.  A Mathematical Theory of Antenna Arrays with Randomly Spaced Elements , 1963 .

[14]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[15]  Dejan S. Filipovic,et al.  Frequency Independent Antennas , 2005 .

[16]  Equivalent Strip Width for Cylindrical Wire for Mesh Reflector Antennas: Experiments, Waveguide, and Plane-Wave Simulations , 2006, IEEE Transactions on Antennas and Propagation.

[17]  James J. Rawnick,et al.  A low-profile broadband phased array antenna , 2003, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450).

[18]  D.H. Werner,et al.  Interleaved Ultrawideband Antenna Arrays Based on Optimized Polyfractal Tree Structures , 2009, IEEE Transactions on Antennas and Propagation.

[19]  M D Gregory,et al.  Nature-Inspired Design Techniques for Ultra-Wideband Aperiodic Antenna Arrays , 2010, IEEE Antennas and Propagation Magazine.

[20]  John L. Volakis,et al.  Interwoven Spiral Array (ISPA) With a 10:1 Bandwidth on a Ground Plane , 2011, IEEE Antennas and Wireless Propagation Letters.

[21]  J. Yamauchi,et al.  Equiangular Spiral Antenna Backed by a Shallow Cavity With Absorbing Strips , 2008, IEEE Transactions on Antennas and Propagation.

[22]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Tutorial , 2016, ArXiv.

[23]  R. Guinvarc'h,et al.  Dual Polarization Interleaved Spiral Antenna Phased Array With an Octave Bandwidth , 2010, IEEE Transactions on Antennas and Propagation.

[24]  P. J. Gibson The Vivaldi Aerial , 1979, 1979 9th European Microwave Conference.