SCANNING SQUID MICROSCOPY

The scanning SQUID microscope (SSM) is a powerful tool for imaging magnetic fields above sample surfaces. It has the advantage of high sensitivity and bandwidth and the disadvantages of relatively modest spatial resolution and the requirement of a cooled SQUID sensor. We describe the various implementations of this type of instrument and discuss a number of applications, including magnetic imaging of short circuits in integrated circuits, corrosion currents in aluminum, and trapped flux in superconductors.

[1]  B. Josephson Possible new effects in superconductive tunnelling , 1962 .

[3]  Mark B. Ketchen,et al.  Magnetic imaging of moat‐guarded superconducting electronic circuits , 1995 .

[4]  J. Lambe,et al.  Macroscopic quantum interference in superconductors , 1965 .

[5]  Daniel Joseph Staton Magnetic Imaging of Applied and Propagating Action Currents in Cardiac Tissue Slices: Determination of Anisotropic Electrical Conductivities in a Two-Dimensional Bidomain. , 1994 .

[6]  Amar,et al.  Experimental proof of a time-reversal-invariant order parameter with a pi shift in YBa2Cu3O7- delta. , 1995, Physical review letters.

[7]  Naia Venturi,et al.  Compact large‐range cryogenic scanner , 1995 .

[8]  Hans D. Hallen,et al.  Scanning Hall probe microscopy , 1992 .

[9]  J. E. Stern,et al.  Magnetic force microscopy: General principles and application to longitudinal recording media , 1990 .

[10]  B. A. Scott,et al.  Application of scanning SQUID petrology to high-pressure materials science , 1997, Nature.

[11]  NDE applications of SQUID magnetometry to electrochemical systems , 1991 .

[12]  K. Harada,et al.  Real-time observation of vortex lattices in a superconductor by electron microscopy , 1992, Nature.

[13]  N. Koshizuka,et al.  Direct observation of magnetic flux behavior in high-Tc YBa2Cu30x superconductors using the magneto-optical effect of iron garnet films , 1991 .

[14]  Eddy current microscopy using a 77-K superconducting sensor , 1994 .

[15]  J. Zimmerman,et al.  Quantized Flux Pinning in Superconducting Niobium , 1964 .

[16]  M. Macvicar,et al.  SQUID magnetometry applied as a non-invasive electroanalytic chemical technique , 1991 .

[17]  J. Clarke,et al.  High‐transition temperature superconducting quantum interference device microscope , 1996 .

[18]  F. London On the Problem of the Molecular Theory of Superconductivity , 1948 .

[19]  P. Anderson,et al.  Interlayer effects in high-Tc superconductors , 1988, Nature.

[20]  B. Roth,et al.  Magnetic determination of the spatial extent of a single cortical current source: a theoretical analysis. , 1988, Electroencephalography and clinical neurophysiology.

[21]  F. Wellstood,et al.  High resolution magnetic microscopy using a DC SQUID , 1993, IEEE Transactions on Applied Superconductivity.

[22]  Self-oscillating micro-SQUIDs for application in a scanning SQUID microscope , 1997, IEEE Transactions on Applied Superconductivity.

[23]  John Lambe,et al.  QUANTUM INTERFERENCE EFFECTS IN JOSEPHSON TUNNELING , 1964 .

[24]  S. Tan,et al.  High resolution SQUID imaging of current and magnetization distributions , 1993, IEEE Transactions on Applied Superconductivity.

[25]  J. G. Bellingham,et al.  SQUID technology applied to the study of electrochemical corrosion , 1987 .

[26]  A. D. Hibbs,et al.  A high‐resolution magnetic imaging system based on a SQUID magnetometer , 1992 .

[27]  John P. Wikswo,et al.  Application of Superconducting Magnetometry in the Study of Aircraft Aluminum Alloy Corrosion , 1996 .

[28]  Harold Weinstock,et al.  SQUID sensors : fundamentals, fabrication, and applications , 1996 .

[29]  John Clarke,et al.  Principles and applications of SQUIDs , 1989, Proc. IEEE.

[30]  Francis Patrick Rogers A device for experimental observation of flux vortices trapped in superconducting thin films , 1983 .

[31]  William J. Gallagher,et al.  High‐resolution scanning SQUID microscope , 1995 .

[32]  J.P. Wikswo,et al.  SQUID magnetometers for biomagnetism and nondestructive testing: important questions and initial answers , 1995, IEEE Transactions on Applied Superconductivity.

[33]  Corrosion , 1941, Science.

[34]  A. Lauder,et al.  Magnetic susceptibility imaging for nondestructive evaluation (using SQUID magnetometer) , 1993, IEEE Transactions on Applied Superconductivity.

[35]  John Clarke,et al.  Microwave microscopy using a superconducting quantum interference device , 1995 .

[36]  W. Steckelmacher Encyclopedia of applied physics , 1996 .

[37]  J. Clarke,et al.  High-T/sub c/ SQUID microscope for room temperature samples , 1997, IEEE Transactions on Applied Superconductivity.

[38]  John P. Wikswo,et al.  High resolution magnetic susceptibility imaging of geological thin sections: Pilot study of a pyroclastic sample from the Bishop Tuff, California, U.S.A. , 1992 .

[39]  Shaw,et al.  Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBa2Cu3O7- delta. , 1994, Physical review letters.

[40]  J. J. Kingston,et al.  Magnetic microscopy using a liquid nitrogen cooled YBa2Cu3O7 superconducting quantum interference device , 1993 .

[41]  High-frequency magnetic microscopy using a high-T/sub c/ SQUID , 1995, IEEE Transactions on Applied Superconductivity.

[42]  Bascom S. Deaver,et al.  Experimental Evidence for Quantized Flux in Superconducting Cylinders , 1961 .

[43]  S. Schultz,et al.  Scanning magnetoresistance microscopy , 1996 .

[44]  L. N. Vu,et al.  Design and implementation of a scanning SQUID microscope , 1993, IEEE Transactions on Applied Superconductivity.

[45]  John P. Wikswo,et al.  Detection of Hidden Corrosion of Aircraft Aluminum Alloys by Magnetometry Using a Superconducting Quantum Interference Device , 1997 .

[46]  John P. Wikswo,et al.  SQUIDs for nondestructive evaluation , 1997 .

[47]  Erber,et al.  Threshold of Barkhausen emission and onset of hysteresis in iron. , 1985, Physical review. B, Condensed matter.

[48]  J. Zimmerman,et al.  QUANTUM EFFECTS IN TYPE II SUPERCONDUCTORS , 1964 .

[49]  Duane Crum,et al.  An improved method for magnetic identification and localization of cracks in conductors , 1993 .

[50]  John P. Wikswo,et al.  Conductivity Imaging in Plates Using Current Injection Tomography , 1996 .

[51]  B. D. Lichter,et al.  Detecting in-situ active corrosion by a SQUID magnetometer , 1995 .

[52]  M. Nabauer,et al.  Experimental Proof of Magnetic Flux Quantization in a Superconducting Ring , 1961 .

[53]  J. H. Wang,et al.  Scanning SQUID microscope tests of the symmetry of the high-Tc gap , 1996 .

[54]  L. N. Vu,et al.  Imaging of magnetic vortices in superconducting networks and clusters by scanning SQUID microscopy , 1993 .

[55]  John P. Wikswo,et al.  A New Finite-Element Approach to Reconstruct a Bounded and Discontinuous Two-Dimensional Current Image from a Magnetic Field Map , 1995 .

[56]  F. Wellstood,et al.  Angular dependence of the symmetry of the order parameter in YBa/sub 2/Cu/sub 3/O/sub 7-/spl delta// , 1997, IEEE Transactions on Applied Superconductivity.

[57]  Vortex imaging in superconducting films by scanning hall probe microscopy , 1996 .

[58]  A. D. Hibbs Measurement of Electrochemical Corrosion Currents Using a Multichannel Superconducting Quantum Interference Device Magnetometer , 1992 .

[59]  C. A. Murray,et al.  Magnetic Flux-Line Lattices and Vortices in the Copper Oxide Superconductors , 1992, Science.

[60]  B. Roth,et al.  The magnetic field of cortical current sources: the application of a spatial filtering model to the forward and inverse problems. , 1990, Electroencephalography and clinical neurophysiology.

[61]  Sun,et al.  Direct imaging of integer and half-integer Josephson vortices in high-Tc grain boundaries. , 1996, Physical review letters.

[62]  John P. Wikswo High-Resolution Measurements of Biomagnetic Fields , 1988 .

[63]  K. Moler,et al.  Images of Interlayer Josephson Vortices in Tl2Ba2CuO6+δ , 1998 .

[64]  T. M. Rice,et al.  Paramagnetic Effect in High T c Superconductors -A Hint for d-Wave Superconductivity , 1992 .

[65]  J. Clarke,et al.  Imaging radio‐frequency fields using a scanning SQUID microscope , 1995 .

[66]  Kevin G. Stawiasz,et al.  Design and applications of a scanning SQUID microscope , 1995, IBM J. Res. Dev..

[67]  B. Roth,et al.  Apodized pickup coils for improved spatial resolution of SQUID magnetometers , 1990 .

[68]  M. Ketchen,et al.  Symmetry of the order parameter in the high-Tc superconductor YBa2Cu3O7- δ , 1995, Nature.

[69]  Dietmar Drung,et al.  A 37 channel DC SQUID magnetometer system , 1991 .

[70]  W. L. Goodman,et al.  Quantized flux states of superconducting cylinders , 1971 .

[71]  F. Wellstood,et al.  Microwave electric-field imaging using a high-Tc scanning superconducting quantum interference device , 1998 .

[72]  Shaofen Tan Linear System Imaging and its Applications to Magnetic Measurements by SQUID Magnetometers. , 1992 .

[73]  John Clarke,et al.  Magnetic Microscopy Using Superconducting Ouantum Interference Devices , 1993 .

[74]  Lee,et al.  Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO-Pb dc SQUIDs. , 1993, Physical review letters.

[75]  Robert Celotta,et al.  Scanning electron microscopy with polarization analysis (SEMPA) , 1990 .

[76]  Ott,et al.  Evidence for an unconventional superconducting order parameter in YBa2Cu3O6.9. , 1994, Physical review. B, Condensed matter.

[77]  N. G. Sepulveda,et al.  Using a magnetometer to image a two‐dimensional current distribution , 1989 .