A new space–time discretization for the Swift–Hohenberg equation that strictly respects the Lyapunov functional

Abstract The Swift–Hohenberg equation is a central nonlinear model in modern physics. Originally derived to describe the onset and evolution of roll patterns in Rayleigh–Benard convection, it has also been applied to study a variety of complex fluids and biological materials, including neural tissues. The Swift–Hohenberg equation may be derived from a Lyapunov functional using a variational argument. Here, we introduce a new fully-discrete algorithm for the Swift–Hohenberg equation which inherits the nonlinear stability property of the continuum equation irrespectively of the time step. We present several numerical examples that support our theoretical results and illustrate the efficiency, accuracy and stability of our new algorithm. We also compare our method to other existing schemes, showing that is feasible alternative to the available methods.

[1]  J. Swift,et al.  Hydrodynamic fluctuations at the convective instability , 1977 .

[2]  Kestutis Staliunas,et al.  Dynamics of phase domains in the Swift-Hohenberg equation☆ , 1998 .

[3]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[4]  R. Nicolaides,et al.  Numerical analysis of a continuum model of phase transition , 1991 .

[5]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[6]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[7]  Nikolai A. Kudryashov,et al.  Exact solutions of the Swift–Hohenberg equation with dispersion , 2011, 1112.5444.

[8]  Steven M. Wise,et al.  Unconditionally stable schemes for equations of thin film epitaxy , 2010 .

[9]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[10]  James D. Gunton,et al.  Numerical solution of the Swift-Hohenberg equation in two dimensions , 1991 .

[11]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[12]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[13]  Francisco Armero,et al.  Volume-preserving energy–momentum schemes for isochoric multiplicative plasticity , 2007 .

[14]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[15]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .

[16]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[17]  C. Doering,et al.  New upper bounds and reduced dynamical modeling for Rayleigh–Bénard convection in a fluid saturated porous layer , 2012 .

[18]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[19]  P. G. Drazin,et al.  Hydrodynamic Stability: CENTRIFUGAL INSTABILITY , 2004 .

[20]  Cheng Wang,et al.  Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation , 2009, J. Comput. Phys..

[21]  Cheng Wang,et al.  An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..

[22]  Raducanu Razvan,et al.  MATHEMATICAL MODELS and METHODS in APPLIED SCIENCES , 2012 .

[23]  Ignacio Romero,et al.  Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics: Part I: Monolithic integrators and their application to finite strain thermoelasticity , 2010 .

[24]  Anh-Vu Vuong,et al.  ISOGAT: A 2D tutorial MATLAB code for Isogeometric Analysis , 2010, Comput. Aided Geom. Des..

[25]  Alan R. Champneys,et al.  Localized Hexagon Patterns of the Planar Swift-Hohenberg Equation , 2008, SIAM J. Appl. Dyn. Syst..

[26]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[27]  James A. Warren,et al.  An efficient algorithm for solving the phase field crystal model , 2008, J. Comput. Phys..

[28]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[29]  N. Magnitskii,et al.  Nonlinear dynamics of laminar-turbulent transition in three dimensional Rayleigh–Benard convection , 2010 .

[30]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[31]  Yunxian Liu,et al.  A class of stable spectral methods for the Cahn-Hilliard equation , 2009, J. Comput. Phys..

[32]  San Miguel M,et al.  Numerical study of the dynamical aspects of pattern selection in the stochastic Swift-Hohenberg equation in one dimension. , 1991, Physical Review A. Atomic, Molecular, and Optical Physics.

[33]  S. M. Wise,et al.  Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations , 2010, J. Sci. Comput..

[34]  Manuel G. Velarde,et al.  Implicit time splitting for fourth-order parabolic equations , 1997 .

[35]  Christo I. Christov,et al.  Numerical scheme for Swift-Hohenberg equation with strict implementation of lyapunov functional , 2002 .

[36]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[37]  G. Dahlquist A special stability problem for linear multistep methods , 1963 .

[38]  E. Tadmor Skew-selfadjoint form for systems of conservation laws , 1984 .

[39]  Grant,et al.  Ordering dynamics in the two-dimensional stochastic Swift-Hohenberg equation. , 1992, Physical review letters.

[40]  Thomas J. R. Hughes,et al.  Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models , 2011, J. Comput. Phys..

[41]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[42]  Erico L. Rempel,et al.  Gradient pattern analysis of Swift-Hohenberg dynamics: Phase disorder characterization , 2000 .

[43]  E. Koschmieder,et al.  Bénard cells and Taylor vortices , 1993 .

[44]  Ignacio Romero,et al.  Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics Part II: fractional step methods , 2010 .

[45]  J. París,et al.  Numerical simulation of asymptotic states of the damped Kuramoto-Sivashinsky equation. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  A. Harten On the symmetric form of systems of conservation laws with entropy , 1983 .

[47]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[48]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[49]  A. Getling Rayleigh-Bénard convection , 2012, Scholarpedia.

[50]  R. A. Wentzell,et al.  Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. Clarendon Press: Oxford University Press, 1961. 652 pp. £5. 5s. , 1962, Journal of Fluid Mechanics.

[51]  Axel Hutt,et al.  Analysis of nonlocal neural fields for both general and gamma-distributed connectivities , 2005 .

[52]  Edward A. Spiegel,et al.  Rayleigh‐Bénard Convection: Structures and Dynamics , 1998 .

[53]  Steven M. Wise,et al.  An Energy Stable and Convergent Finite-Difference Scheme for the Modified Phase Field Crystal Equation , 2011, SIAM J. Numer. Anal..

[54]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .

[55]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[56]  D. J. Eyre,et al.  An Unconditionally Stable One-Step Scheme for Gradient Systems , 1997 .

[57]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[58]  M. Gurtin Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance , 1996 .

[59]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[60]  T. Laursen,et al.  Energy consistent algorithms for dynamic finite deformation plasticity , 2002 .

[61]  Daisuke Furihata,et al.  A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.