Non-Markovian theory of collective plasmon-molecule excitations in nanojunctions combined with classical electrodynamic simulations

We present a pseudoparticle nonequilibrium Green function formalism as a tool to study the coupling between plasmons and excitons in nonequilibrium molecular junctions. The formalism treats plasmon-exciton couplings and intra-molecular interactions exactly, and is shown to be especially convenient for exploration of plasmonic absorption spectrum of plexitonic systems, where combined electron and energy transfers play an important role. We demonstrate the sensitivity of the molecule-plasmon Fano resonance to junction bias and intra-molecular interactions (Coulomb repulsion and intra-molecular exciton coupling). The electromagnetic theory is used in order to derive self-consistent ¯eld-induced coupling terms between the molecular and the plasmon excitations. Our study opens a way to deal with strongly interacting plasmon-exciton systems in nonequilibrium molecular devices.

[1]  G. Bryant,et al.  Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability. , 2008, Nano letters.

[2]  F J García de Abajo,et al.  Quantum plexcitonics: strongly interacting plasmons and excitons. , 2011, Nano letters.

[3]  Janos Vörös,et al.  Single plasmonic nanoparticles for biosensing. , 2011, Trends in biotechnology.

[4]  V. Bulović,et al.  Highly efficient resonant coupling of optical excitations in hybrid organic/inorganic semiconductor nanostructures. , 2007, Nature nanotechnology.

[5]  Michael Galperin,et al.  Transport and optical response of molecular junctions driven by surface plasmon polaritons , 2009, 0911.2499.

[6]  Meir,et al.  Anderson model out of equilibrium: Noncrossing-approximation approach to transport through a quantum dot. , 1994, Physical review. B, Condensed matter.

[7]  Michael Galperin,et al.  Light-induced current in molecular junctions: Local field and non-Markov effects , 2011, 1103.3293.

[8]  E. V. Chulkov,et al.  Theory of surface plasmons and surface-plasmon polaritons , 2007 .

[9]  Jasper Knoester,et al.  Uniform exciton fluorescence from individual molecular nanotubes immobilized on solid substrates. , 2009, Nature nanotechnology.

[10]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[11]  Peter Nordlander,et al.  Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes. , 2008, Nano letters.

[12]  M. Green,et al.  Plasmonics for photovoltaic applications , 2010 .

[13]  Abraham Nitzan,et al.  Theory of energy transfer between molecules near solid state particles , 1985 .

[14]  George C. Schatz,et al.  Modeling the effect of small gaps in surface-enhanced Raman spectroscopy , 2012 .

[15]  George C. Schatz,et al.  Correlated Structure and Optical Property Studies of Plasmonic Nanoparticles , 2011 .

[16]  Stephan W Koch,et al.  Quantum theory of the optical and electronic properties of semiconductors, fifth edition , 2009 .

[17]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[18]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[19]  D. Ahn,et al.  Transport theory of coupled quantum dots based on the auxiliary-operator method , 2010, 1010.1576.

[20]  Gary P. Wiederrecht,et al.  Coherent Coupling of Molecular Excitons to Electronic Polarizations of Noble Metal Nanoparticles , 2004 .

[21]  David G. Lidzey,et al.  Cavity polaritons in microcavities containing disordered organic semiconductors , 2003 .

[22]  T. Shahbazyan,et al.  Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: the plasmonic Dicke effect. , 2008, Physical review letters.

[23]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[24]  Daniel Neuhauser,et al.  Multiscale Maxwell-Schrodinger modeling: A split field finite-difference time-domain approach to molecular nanopolaritonics. , 2009, The Journal of chemical physics.

[25]  N. E. Bickers Review of techniques in the large-N expansion for dilute magnetic alloys , 1987 .

[26]  Wayne Dickson,et al.  Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies. , 2007, Nano letters.

[27]  G. Schatz,et al.  On the linear response and scattering of an interacting molecule-metal system. , 2009, The Journal of chemical physics.

[28]  Nanoplasmonic renormalization and enhancement of Coulomb interactions , 2008, 0802.0229.

[29]  Walter Pfeiffer,et al.  Ultrafast adaptive optical near-field control , 2006 .

[30]  Mark I. Stockman,et al.  The spaser as a nanoscale quantum generator and ultrafast amplifier , 2009, 0908.3559.

[31]  M. Stockman Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.

[32]  R. Knox,et al.  Theory of Molecular Excitons , 1964 .

[33]  D. Neuhauser,et al.  Near-field: a finite-difference time-dependent method for simulation of electrodynamics on small scales. , 2011, The Journal of chemical physics.

[34]  G. Schatz,et al.  Combined linear response quantum mechanics and classical electrodynamics (QM/ED) method for the calculation of surface-enhanced Raman spectra. , 2012, The journal of physical chemistry. A.

[35]  Y. Prior,et al.  Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film. , 2012, Physical review letters.

[36]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[37]  Shaohong L Li,et al.  Near-field for electrodynamics at sub-wavelength scales: generalizing to an arbitrary number of dielectrics. , 2012, The Journal of chemical physics.

[38]  D. Neuhauser,et al.  Modeling molecular effects on plasmon transport: silver nanoparticles with tartrazine. , 2011, The Journal of chemical physics.

[39]  Paul S Weiss,et al.  Molecular plasmonics for biology and nanomedicine. , 2012, Nanomedicine.

[40]  V. Bulović,et al.  Color-selective photocurrent enhancement in coupled J-aggregate/nanowires formed in solution. , 2011, Nano letters.

[41]  Paul S Weiss,et al.  Incident-angle-modulated molecular plasmonic switches: a case of weak exciton-plasmon coupling. , 2011, Nano letters.

[42]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[43]  Hong Wei,et al.  Chiral surface plasmon polaritons on metallic nanowires. , 2011, Physical review letters.

[44]  A. Nitzan,et al.  Molecular optoelectronics: the interaction of molecular conduction junctions with light. , 2012, Physical chemistry chemical physics : PCCP.

[45]  Martin T. Hill Status and prospects for metallic and plasmonic nano-lasers , 2010 .

[46]  Michael Galperin,et al.  Inelastic transport: a pseudoparticle approach. , 2012, Physical chemistry chemical physics : PCCP.

[47]  Kadir Aslan,et al.  Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. , 2005, Current opinion in chemical biology.

[48]  Arnold F. McKinley,et al.  Plasmonics and nanophotonics for photovoltaics , 2011 .

[49]  Abraham Nitzan,et al.  Numerical studies of the interaction of an atomic sample with the electromagnetic field in two dimensions , 2011, 1104.3325.

[50]  D. Neuhauser,et al.  Nonlinear nanopolaritonics: finite-difference time-domain Maxwell-Schrödinger simulation of molecule-assisted plasmon transfer. , 2009, The Journal of chemical physics.

[51]  M. Ratner,et al.  Compensation of Coulomb blocking and energy transfer in the current voltage characteristic of molecular conduction junctions. , 2011, Nano letters.

[52]  Michael Galperin,et al.  Collective Plasmon-Molecule Excitations in Nanojunctions: Quantum Consideration , 2012 .

[53]  P. Nordlander,et al.  Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport. , 2011, The Journal of chemical physics.

[54]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[55]  R. Ruppin,et al.  Decay of an excited molecule near a small metal sphere , 1982 .

[56]  R. Saija,et al.  Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics. , 2010, Physical review letters.

[57]  Matthew Pelton,et al.  Quantum-dot-induced transparency in a nanoscale plasmonic resonator. , 2010, Optics express.

[58]  Lasse Jensen,et al.  Theoretical studies of plasmonics using electronic structure methods. , 2011, Chemical reviews.

[59]  V. May,et al.  Photoinduced switching of the current through a single molecule: effects of surface plasmon excitations of the leads. , 2012, Nano letters.

[60]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[61]  S. V. Tyablikov Methods in the Quantum Theory of Magnetism , 1967 .

[62]  Naomi J Halas,et al.  Plasmonics: an emerging field fostered by Nano Letters. , 2010, Nano letters.

[63]  G. Schatz,et al.  Time-dependent density functional methods for surface enhanced Raman scattering (SERS) studies , 2012 .

[64]  Piers Coleman,et al.  New approach to the mixed-valence problem , 1984 .

[65]  Garnett W. Bryant,et al.  Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects , 2010 .

[66]  Yves F Dufrêne,et al.  Single-molecule imaging of cell surfaces using near-field nanoscopy. , 2012, Accounts of chemical research.

[67]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[68]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[69]  Wei Zhang,et al.  Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect. , 2006, Physical review letters.