Ionic basis of GABAA receptor channel function in the nervous system

Abbreviations

[1]  A. Constanti,et al.  A novel effect of zinc on the lobster muscle GABA receptor , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[2]  S. Antonarakis,et al.  Cloning of the gamma-aminobutyric acid (GABA) rho 1 cDNA: a GABA receptor subunit highly expressed in the retina. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Robert C. Malenka,et al.  Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells , 1986, Nature.

[4]  G protein is coupled to presynaptic glutamate and GABA receptors in lobster neuromuscular synapse. , 1990, Journal of neurophysiology.

[5]  D. Prince,et al.  Relative contributions of passive equilibrium and active transport to the distribution of chloride in mammalian cortical neurons. , 1988, Journal of neurophysiology.

[6]  B. Ransom,et al.  The neurophysiology of glial cells. , 1992, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[7]  D. Tank,et al.  Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  L. Renaud,et al.  Actions of gamma‐aminobutyric acid on rat supraoptic nucleus neurosecretory neurones in vitro. , 1987, The Journal of physiology.

[9]  E. Wright,et al.  Anion selectivity in biological systems. , 1977, Physiological reviews.

[10]  R. Nicoll,et al.  Pharmacological evidence for two kinds of GABA receptors on rat hippocampal pyramidal cells studied in vitro , 1982, The Journal of physiology.

[11]  M. Dichter,et al.  Cellular Mechanisms of Epilepsy and Potential New Treatment Strategies , 1989, Epilepsia.

[12]  C. Inagaki,et al.  An ATP-driven Cl− pump regulates Cl− concentrations in rat hippocampal neurons , 1991, Neuroscience Letters.

[13]  S. Hunt,et al.  Distinct GABAA receptor α subunit mRNAs show differential patterns of expression in bovine brain , 1988, Neuron.

[14]  M. Hollmann,et al.  Molecular neurobiology of glutamate receptors. , 1992, Annual review of physiology.

[15]  B Sakmann,et al.  Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch‐clamp study. , 1990, The Journal of physiology.

[16]  A. Hamberger,et al.  Glutamate as transmitter of hippocampal perforant path , 1977, Nature.

[17]  J. Voipio,et al.  Mechanism of action of GABA on intracellular pH and on surface pH in crayfish muscle fibres. , 1990, The Journal of physiology.

[18]  H. Kettenmann,et al.  gamma-Aminobutyric acid directly depolarizes cultured oligodendrocytes , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  C. Peers,et al.  Inhibition of Ca(2+)‐activated K+ currents by intracellular acidosis in isolated type I cells of the neonatal rat carotid body. , 1991, The Journal of physiology.

[20]  J. Voipio,et al.  pH transients due to monosynaptic activation of GABAA receptors in rat hippocampal slices. , 1992, Neuroreport.

[21]  R. Twyman,et al.  Kinetic properties of the GABAA receptor main conductance state of mouse spinal cord neurones in culture. , 1989, The Journal of physiology.

[22]  J. Russell,et al.  Coupled Na/K/Cl efflux. "Reverse" unidirectional fluxes in squid giant axons , 1987, The Journal of general physiology.

[23]  H. Kettenmann,et al.  GABA triggers a Cl− efflux from cultured mouse oligodendrocytes , 1989, Neuroscience Letters.

[24]  R. Twyman,et al.  Intraburst kinetic properties of the GABAA receptor main conductance state of mouse spinal cord neurones in culture. , 1990, The Journal of physiology.

[25]  J. Connor,et al.  Depolarization- and transmitter-induced changes in intracellular Ca2+ of rat cerebellar granule cells in explant cultures , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  K. Obata,et al.  Excitatory and inhibitory actions of GABA and glycine on embryonic chick spinal neurons in culture , 1978, Brain Research.

[27]  H. Lux,et al.  Activity dependent alkaline and acid transients in guinea pig hippocampal slices , 1989, Brain Research.

[28]  R. Weatherby,et al.  Bicuculline-insensitive GABA receptors: Studies on the binding of (−)-baclofen to rat cerebellar membranes , 1984, Neuroscience Letters.

[29]  N. Tokutomi,et al.  Contribution of chloride shifts to the fade of gamma‐aminobutyric acid‐gated currents in frog dorsal root ganglion cells. , 1987, The Journal of physiology.

[30]  T. Berger,et al.  GABA‐ and glutamate‐activated currents in glial cells of the mouse corpus callosum slice , 1992, Journal of neuroscience research.

[31]  D. Clapham,et al.  gamma-Aminobutyric acid receptor channels in adrenal chromaffin cells: a patch-clamp study. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[32]  B. Alger Gating of GABAergic Inhibition in Hippocampal Pyramidal Cells a , 1991, Annals of the New York Academy of Sciences.

[33]  P Andersen,et al.  Synaptic integration in hippocampal CA1 pyramids. , 1990, Progress in brain research.

[34]  M. Chesler,et al.  Extracellular alkalinization evoked by GABA and its relationship to activity‐dependent pH shifts in turtle cerebellum. , 1991, The Journal of physiology.

[35]  W. C. Groat THE ACTIONS OF γ-AMINOBTJTYRIC ACID AND RELATED AMINO ACIDS ON MAMMALIAN AUTONOMIC GANGLIA , 1970 .

[36]  D. Farb,et al.  Modulation of neurotransmitter receptor desensitization: chlordiazepoxide stimulates fading of the GABA response , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  N. Akaike,et al.  Effects of diuretics on GABA‐gated chloride current in frog isolated sensory neurones , 1988, British journal of pharmacology.

[38]  J. Dupont,et al.  Ionic control of intracellular pH in rat cerebellar Purkinje cells maintained in culture. , 1990, The Journal of physiology.

[39]  S. W. Kuffler,et al.  Presynaptic inhibition at the crayfish neuromuscular junction , 1961, The Journal of physiology.

[40]  B. Katz,et al.  A study of the ‘desensitization’ produced by acetylcholine at the motor end‐plate , 1957, The Journal of physiology.

[41]  J. Loeffler,et al.  GABAA and GABAB receptors on porcine pars intermedia cells in primary culture: Functional role in modulating peptide release , 1986, Neuroscience.

[42]  J. Hablitz,et al.  Whole-cell and single-channel recordings of GABA-gated currents in cultured chick cerebral neurons. , 1988, Journal of neurophysiology.

[43]  D. Prince,et al.  Frequency‐dependent depression of inhibition in guinea‐pig neocortex in vitro by GABAB receptor feed‐back on GABA release. , 1989, The Journal of physiology.

[44]  S. Grillner,et al.  Presynaptic GABAA and GABAB Receptor‐mediated Phasic Modulation in Axons of Spinal Motor Interneurons , 1991, The European journal of neuroscience.

[45]  B. Alger,et al.  Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  P. Ascher,et al.  Chloride distribution in Aplysia neurones , 1976, The Journal of physiology.

[47]  H. Kettenmann,et al.  Intracellular pH regulation in cultured mouse oligodendrocytes. , 1988, The Journal of physiology.

[48]  L. Sivilotti,et al.  GABA receptor mechanisms in the central nervous system , 1991, Progress in Neurobiology.

[49]  L. Holden-Dye,et al.  Commentary on the evolution of transmitters, receptors and ion channels in invertebrates. , 1989, Comparative biochemistry and physiology. A, Comparative physiology.

[50]  J. Barker,et al.  Differential and transient expression of GABAA receptor alpha-subunit mRNAs in the developing rat CNS , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  R. Miledi,et al.  Expression of mammalian gamma-aminobutyric acid receptors with distinct pharmacology in Xenopus oocytes. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[52]  R. Wong,et al.  GABAA-receptor function in hippocampal cells is maintained by phosphorylation factors. , 1988, Science.

[53]  R. Nicoll The blockade of GABA mediated responses in the frog spinal cord by ammonium ions and furosemide. , 1978, The Journal of physiology.

[54]  F. Clarac,et al.  Direct evidence for presynaptic inhibitory mechanisms in crayfish sensory afferents. , 1992, Journal of neurophysiology.

[55]  M. Duchen,et al.  Effects of metabolic blockade on the regulation of intracellular calcium in dissociated mouse sensory neurones. , 1990, The Journal of physiology.

[56]  H. Higashi,et al.  Effects of hypoxia on rat hippocampal neurones in vitro. , 1987, The Journal of physiology.

[57]  P Barbry,et al.  Biochemical properties of the Na+/H+ exchange system in rat brain synaptosomes. Interdependence of internal and external pH control of the exchange activity. , 1985, The Journal of biological chemistry.

[58]  H. Hatt,et al.  Liquid filament switch for ultra-fast exchanges of solutions at excised patches of synaptic membrane of crayfish muscle , 1987, Neuroscience Letters.

[59]  R. Olsen,et al.  Molecular biology of GABAA receptors , 1990, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[60]  A. Tolkovsky,et al.  Na+/H+ exchange is the major mechanism of pH regulation in cultured sympathetic neurons: Measurements in single cell bodies and neurites using a fluorescent pH indicator , 1987, Neuroscience.

[61]  S. Cull-Candy,et al.  Pharmacological properties and H+ sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones. , 1991, The Journal of physiology.

[62]  R. Wong,et al.  Voltage-clamp study on GABA response desensitization in single pyramidal cells dissociated from the hippocampus of adult guinea pigs , 1984, Neuroscience Letters.

[63]  R K Wong,et al.  Cellular factors influencing GABA response in hippocampal pyramidal cells. , 1982, Journal of neurophysiology.

[64]  M. Chesler,et al.  Modulation of extracellular pH by glutamate and GABA in rat hippocampal slices. , 1992, Journal of neurophysiology.

[65]  R. Thomas,et al.  The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones , 1977, The Journal of physiology.

[66]  J. Turner,et al.  Potentiators of responses to activation of γ-aminobutyric acid (GABAA) receptors , 1987, Neuropharmacology.

[67]  J. Barker,et al.  Rat hippocampal neurons in culture: voltage-clamp analysis of inhibitory synaptic connections. , 1984, Journal of neurophysiology.

[68]  J. Swann,et al.  Postnatal development of GABA-mediated synaptic inhibition in rat hippocampus , 1989, Neuroscience.

[69]  J. Voipio,et al.  Influence of GABA‐gated bicarbonate conductance on potential, current and intracellular chloride in crayfish muscle fibres. , 1989, The Journal of physiology.

[70]  R. Harris,et al.  Activation of protein kinase C selectively inhibits the gamma-aminobutyric acidA receptor: role of desensitization. , 1992, Molecular pharmacology.

[71]  F. Alvarez-Leefmans,et al.  Methods for Measuring Chloride Transport across Nerve, Muscle, and Glial Cells , 1990 .

[72]  S. B. Kater,et al.  Independent regulation of calcium revealed by imaging dendritic spines , 1991, Nature.

[73]  R. Tsien Fluorescent probes of cell signaling. , 1989, Annual review of neuroscience.

[74]  T. Yakushiji,et al.  Effects of benzodiazepines and non‐benzodiazepine compounds on the GABA‐induced response in frog isolated sensory neurones , 1989, British journal of pharmacology.

[75]  H. Lux,et al.  γ-Aminobutyric acid-induced ion movements in the guinea pig hippocampal slice , 1989, Brain Research.

[76]  C. Scholfield,et al.  DEPOLARIZATION OF NEURONES IN THE ISOLATED OLFACTORY CORTEX OF THE GUINEA‐PIG BY γ‐AMINOBUTYRIC ACID , 1979, British journal of pharmacology.

[77]  W. Schlue,et al.  An inwardly directed electrogenic sodium‐bicarbonate co‐transport in leech glial cells. , 1989, The Journal of physiology.

[78]  B. Gähwiler,et al.  Patch-clamp recording of amino acid-activated responses in "organotypic" slice cultures. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[79]  M. Segal Rat hippocampal neurons in culture: responses to electrical and chemical stimuli. , 1983, Journal of neurophysiology.

[80]  B. Robertson Characteristics of GABA‐activated chloride channels in mammalian dorsal root ganglion neurones. , 1989, The Journal of physiology.

[81]  W. C. Groat GABA-depolarization of a sensory ganglion: antagonism by picrotoxin and bicuculline. , 1972 .

[82]  P W Gage,et al.  Inhibitory post‐synaptic currents in rat hippocampal CA1 neurones. , 1984, The Journal of physiology.

[83]  N. Akaike,et al.  GABA activates different types of chloride-conducting receptor-ionophore complexes in a dose-dependent manner , 1985, Brain Research.

[84]  P. Seeburg,et al.  GABAA receptor channels: from subunits to functional entities , 1992, Current Opinion in Neurobiology.

[85]  K. Onodera,et al.  An analysis of the inhibitory post‐synaptic current in the voltage‐clamped crayfish muscle. , 1979, The Journal of physiology.

[86]  A. Brown,et al.  Active Transport of Potassium by the Giant Neuron of the Aplysia Abdominal Ganglion , 1972, The Journal of general physiology.

[87]  B. Sakmann,et al.  Patch-clamp measurements of elementary chloride currents activated by the putative inhibitory transmitter GABA and glycine in mammalian spinal neurons. , 1983, Journal of neural transmission. Supplementum.

[88]  S N Davies,et al.  Paired‐pulse depression of monosynaptic GABA‐mediated inhibitory postsynaptic responses in rat hippocampus. , 1990, The Journal of physiology.

[89]  F. Alvarez-Leefmans Intracellular Cl − Regulation and Synaptic Inhibition in Vertebrate and Invertebrate Neurons , 1990 .

[90]  B. Connors,et al.  Electrophysiological properties of neocortical neurons in vitro. , 1982, Journal of neurophysiology.

[91]  D. Sattelle,et al.  GABA receptors on the cell-body membrane of an identified insect motor neuron , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[92]  R. Thomas,et al.  Intracellular chloride activity and the effects of acetylcholine in snail neurones , 1974, The Journal of physiology.

[93]  C. Newland,et al.  On the mechanism of action of picrotoxin on GABA receptor channels in dissociated sympathetic neurones of the rat. , 1992, The Journal of physiology.

[94]  B W Connors,et al.  GABAA- and GABAB-mediated processes in visual cortex. , 1992, Progress in brain research.

[95]  R. Thalmann,et al.  Biphasic response of hippocampal pyramidal neurons to GABA , 1981, Neuroscience Letters.

[96]  J. Barker,et al.  Amino acid pharmacology of mammalian central neurones grown in tissue culture. , 1978, The Journal of physiology.

[97]  H. Lux,et al.  Ammonium action on post‐synaptic inhibition in crayfish neurones: implications for the mechanism of chloride extrusion , 1982, The Journal of physiology.

[98]  F. Franciolini,et al.  Chloride channels of biological membranes. , 1990, Biochimica et biophysica acta.

[99]  J. Barker,et al.  Pentobarbital modulates transmitter effects on mouse spinal neurones grown in tissue culture , 1975, Nature.

[100]  P. Gage Activation and modulation of neuronal K+ channels by GABA , 1992, Trends in Neurosciences.

[101]  H. Wigström,et al.  Facilitated induction of hippocampal long-lasting potentiation during blockade of inhibition , 1983, Nature.

[102]  M. Chesler,et al.  Intracellular pH transients of mammalian astrocytes , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[103]  H. Grundfest,et al.  Ionic Permeability of the Inhibitory Postsynaptic Membrane of Lobster Muscle Fibers , 1969, The Journal of General Physiology.

[104]  A. Konnerth,et al.  Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells , 1992, Nature.

[105]  J. Barker,et al.  Convulsant‐induced depression of amino acid responses in cultured mouse spinal neurones studied under voltage clamp , 1983, British journal of pharmacology.

[106]  J. Barker,et al.  Outward rectification of inhibitory postsynaptic currents in cultured rat hippocampal neurones. , 1988, The Journal of physiology.

[107]  M. Chesler Regulation of intracellular pH in reticulospinal neurones of the lamprey, Petromyzon marinus. , 1986, The Journal of physiology.

[108]  R. Horn,et al.  Control of action potentials and Ca2+ influx by the Ca(2+)‐dependent chloride current in mouse pituitary cells. , 1991, The Journal of physiology.

[109]  W. Boron,et al.  Chloride Transport in the Squid Giant Axon , 1990 .

[110]  R. Nicoll,et al.  GABA-mediated biphasic inhibitory responses in hippocampus , 1979, Nature.

[111]  G. Gros,et al.  Extracellular carbonic anhydrase of skeletal muscle associated with the sarcolemma. , 1985, Journal of applied physiology.

[112]  P. Fatt,et al.  Membrane permeability change during inhibitory transmitter action in crustacean muscle , 1958, The Journal of physiology.

[113]  C. Edwards The selectivity of ion channels in nerve and muscle , 1982, Neuroscience.

[114]  P. Seeburg,et al.  Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family , 1987, Nature.

[115]  Mechanism of modulation of GABA-activated current by internal calcium in rat central neurons , 1991, Brain Research.

[116]  E. Hoffmann,et al.  Membrane mechanisms in volume and pH regulation in vertebrate cells. , 1989, Physiological reviews.

[117]  T. Smart,et al.  A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission , 1991, Nature.

[118]  M. Farrant,et al.  "Run-down" of gamma-aminobutyric acidA receptor function during whole-cell recording: a possible role for phosphorylation. , 1988, Molecular pharmacology.

[119]  B. Katz,et al.  Membrane Noise produced by Acetylcholine , 1970, Nature.

[120]  B H Gähwiler,et al.  Activity-dependent disinhibition. II. Effects of extracellular potassium, furosemide, and membrane potential on ECl- in hippocampal CA3 neurons. , 1989, Journal of neurophysiology.

[121]  K. Kaila,et al.  Fall in intracellular pH mediated by GABAA receptors in cultured rat astrocytes , 1991, Neuroscience Letters.

[122]  Mechanism of pHi regulation by locust neurones in isolated ganglia: a microelectrode study. , 1992, The Journal of physiology.

[123]  A. Takeuchi,et al.  A study of the inhibitory action of γ‐aminobutyric acid on neuromuscular transmission in the crayfish , 1966 .

[124]  P. Aronson Kinetic properties of the plasma membrane Na+-H+ exchanger. , 1985, Annual review of physiology.

[125]  Beth S. Lee,et al.  Regulation of intracellular pH by a neuronal homolog of the erythrocyte anion exchanger , 1989, Cell.

[126]  S. W. Kuffler,et al.  Mechanism of gamma aminobutyric acid (GABA) action and its relation to synaptic inhibition. , 1958, Journal of neurophysiology.

[127]  H. Ripps,et al.  Effects of gamma-aminobutyric acid on skate retinal horizontal cells: evidence for an electrogenic uptake mechanism. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[128]  R. Nicoll,et al.  Ammonia does not selectively block IPSPs in rat hippocampal pyramidal cells. , 1983, Journal of neurophysiology.

[129]  J. Voipio,et al.  The role of bicarbonate in GABAA receptor‐mediated IPSPs of rat neocortical neurones. , 1993, The Journal of physiology.

[130]  T. Teyler,et al.  Hyperpolarizing and depolarizing GABAA receptor-mediated dendritic inhibition in area CA1 of the rat hippocampus. , 1991, Journal of neurophysiology.

[131]  D. Colquhoun,et al.  Single channels activated by high concentrations of GABA in superior cervical ganglion neurones of the rat. , 1991, The Journal of physiology.

[132]  T. Dwyer,et al.  The permeability of the endplate channel to organic cations in frog muscle , 1980, The Journal of general physiology.

[133]  N. Harrison,et al.  Modification of GABAA receptor function by an analog of cyclic AMP , 1989, Neuroscience Letters.

[134]  Masao Ito The Cerebellum And Neural Control , 1984 .

[135]  J. Barker,et al.  Diazepam and (--)-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of gamma-aminobutyric acid responses in cultured central neurons. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[136]  W. Raabe,et al.  Disinhibition in cat motor cortex by ammonia. , 1975, Journal of neurophysiology.

[137]  W. Moody The ionic mechanism of intracellular pH regulation in crayfish neurones. , 1981, The Journal of physiology.

[138]  A. Takeuchi,et al.  Anion interaction at the inhibitory post‐synaptic membrane of the crayfish neuromuscular junction , 1971, The Journal of physiology.

[139]  R. Nicoll,et al.  Feed‐forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro , 1982, The Journal of physiology.

[140]  B. Siesjö,et al.  Calcium Fluxes, Calcium Antagonists, and Calcium-Related Pathology in Brain Ischemia, Hypoglycemia, and Spreading Depression: A Unifying Hypothesis , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[141]  H. V. Wheal,et al.  Electrophysiology of isolated mammalian CNS preparations , 1981 .

[142]  Y. Ben-Ari,et al.  GABA: an excitatory transmitter in early postnatal life , 1991, Trends in Neurosciences.

[143]  J. Dudel,et al.  GABA induced membrane current noise and the time course of the inhibitory synaptic current in crayfish muscle , 1977, Neuroscience Letters.

[144]  H. Qian,et al.  gamma-Aminobutyric acid (GABA)-induced currents of skate Muller (glial) cells are mediated by neuronal-like GABAA receptors. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[145]  J. Bixby,et al.  The appearance and development of chemosensitivity in Rohon—Beard neurones of the Xenopus spinal cord , 1982, The Journal of physiology.

[146]  Y. Ben-Ari,et al.  Somatic and dendritic actions of γ-aminobutyric acid agonists and uptake blockers in the hippocampusin vivo , 1984, Neuroscience.

[147]  M. Dichter,et al.  Modulation of the N-methyl-D-aspartate channel by extracellular H+. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[148]  T. Maren The General Physiology of Reactions Catalyzed by Carbonic Anhydrase and Their Inhibition by Sulfonamides a , 1984, Annals of the New York Academy of Sciences.

[149]  W. Wisden,et al.  The third gamma subunit of the gamma-aminobutyric acid type A receptor family. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[150]  J. Sutcliffe,et al.  Gene expression in rat brain. , 1983, Nucleic acids research.

[151]  P. Grafe,et al.  Excitatory amino acids and intracellular pH in motoneurons of the isolated frog spinal cord , 1986, Neuroscience Letters.

[152]  P. Grafe,et al.  An intracellular analysis of gamma‐aminobutyric‐acid‐associated ion movements in rat sympathetic neurones. , 1985, The Journal of physiology.

[153]  D. Carpenter,et al.  Effects of furosemide on neural mechanisms in Aplysia. , 1981, Journal of neurobiology.

[154]  B. Gähwiler,et al.  Effects of the GABA uptake inhibitor tiagabine on inhibitory synaptic potentials in rat hippocampal slice cultures. , 1992, Journal of neurophysiology.

[155]  Arnold R. Kriegstein,et al.  Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex , 1989, Journal of Neuroscience Methods.

[156]  D. Lodge,et al.  Epileptiform activity induced by alkalosis in rat neocortical slices: Block by antagonists of N-methyl-d-aspartate , 1987, Neuroscience Letters.

[157]  M. Ito,et al.  Further study on anion permeability of inhibitory post‐synaptic membrane of cat motoneurones , 1962, The Journal of physiology.

[158]  S. Ozawa,et al.  Membrane permeability change during inhibitory transmitter action in crayfish stretch receptor cell. , 1973, Journal of neurophysiology.

[159]  P. Feltz,et al.  Modulation of GABA‐gated chloride currents by intracellular Ca2+ in cultured porcine melanotrophs. , 1991, The Journal of physiology.

[160]  M. Avoli,et al.  4-Aminopyridine induces a long-lasting depolarizing GABA-ergic potential in human neocortical and hippocampal neurons maintained in vitro , 1988, Neuroscience Letters.

[161]  R. P. Kraig,et al.  Carbonic acid buffer species measured in real time with an intracellular microelectrode array. , 1991, The American journal of physiology.

[162]  G. Collingridge,et al.  Voltage‐clamp analysis of somatic gamma‐aminobutyric acid responses in adult rat hippocampal CA1 neurones in vitro. , 1987, Journal of Physiology.

[163]  M. Avoli,et al.  Physiology and pharmacology of epileptiform activity induced by 4-aminopyridine in rat hippocampal slices. , 1991, Journal of neurophysiology.

[164]  Y. Ben-Ari,et al.  GABAergic mechanisms in the CA3 hippocampal region during early postnatal life. , 1990, Progress in brain research.

[165]  G. Somjen Extracellular potassium in the mammalian central nervous system. , 1979, Annual review of physiology.

[166]  M. Szatkowski,et al.  The intrinsic intracellular H+ buffering power of snail neurones. , 1989, The Journal of physiology.

[167]  J. Lerma,et al.  Chloride transport blockers prevent N-methyl-D-aspartate receptor-channel complex activation. , 1992, Molecular pharmacology.

[168]  J. Eccles,et al.  Effects produced on inhibitory postsynaptic potentials by the coupled injections of cations and anions into motoneurons , 1964, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[169]  R. Kopito,et al.  Regulation of intracellular pH in cultured hippocampal neurons by an amiloride-insensitive Na+/H+ exchanger. , 1991, The Journal of biological chemistry.

[170]  R. Deisz,et al.  Comparison of GABA analogues at the crayfish stretch receptor neurone , 1983, Brain Research Bulletin.

[171]  A. Karczmar,et al.  Primary afferent neurones: the ionic mechanism of GABA-mediated depolarization. , 1974, Neuropharmacology.

[172]  F. Stephenson Understanding the GABAA receptor: a chemically gated ion channel. , 1988, The Biochemical journal.

[173]  M. Darlison Invertebrate GABA and glutamate receptors: molecular biology reveals predictable structures but some unusual pharmacologies , 1992, Trends in Neurosciences.

[174]  O. Krishtal,et al.  'Concentration‐clamp' study of gamma‐aminobutyric‐acid‐induced chloride current kinetics in frog sensory neurones. , 1986, The Journal of physiology.

[175]  E. Newman,et al.  Localization and stoichiometry of electrogenic sodium bicarbonate cotransport in retinal glial cells , 1991, Glia.

[176]  A. Constanti,et al.  Pharmacological characterization of different types of GABA and glutamate receptors in vertebrates and invertebrates , 1979, Progress in Neurobiology.

[177]  M. Simmonds Multiple GABA receptors and associated regulatory sites , 1983, Trends in Neurosciences.

[178]  L. Sivilotti,et al.  Complex effects of baclofen on synaptic transmission of the frog optic tectum in vitro , 1988, Neuroscience Letters.

[179]  H. Scharfman,et al.  Responses to γ-aminobutyric acid applied to cell bodies and dendrites of rat visual cortical neurons , 1985, Brain Research.

[180]  D. Sattelle,et al.  Ionic events following GABA receptor activation in an identified insect motor neuron , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[181]  M. Chesler The regulation and modulation of pH in the nervous system , 1990, Progress in Neurobiology.

[182]  Differential effects of extra- and intracellular anions on GABA-activated currents in bullfrog sensory neurons. , 1989, Journal of neurophysiology.

[183]  H. Lux Ammonium and Chloride Extrusion: Hyperpolarizing Synaptic Inhibition in Spinal Motoneurons , 1971, Science.

[184]  P. Seeburg,et al.  Structural and functional basis for GABAA receptor heterogeneity , 1988, Nature.

[185]  R. Nicoll,et al.  Presynaptic inhibition: transmitter and ionic mechanisms. , 1979, International review of neurobiology.

[186]  G. Collingridge,et al.  GABAB autoreceptors regulate the induction of LTP , 1991, Nature.

[187]  K. Skrede,et al.  The transverse hippocampal slice: a well-defined cortical structure maintained in vitro. , 1971, Brain research.

[188]  A. Dolphin,et al.  G protein modulation of calcium currents in neurons. , 1990, Annual review of physiology.

[189]  A. Takeuchi,et al.  Anion permeability of the inhibitory post‐synaptic membrane of the crayfish neuromuscular junction , 1967, The Journal of physiology.

[190]  Rafael Yuste,et al.  Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters , 1991, Neuron.

[191]  W. Boron,et al.  Role of chloride transport in regulation of intracellular pH , 1976, Nature.

[192]  M. Jackson,et al.  Early development of glycine- and GABA-mediated synapses in rat spinal cord , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[193]  J. Lacaille Postsynaptic potentials mediated by excitatory and inhibitory amino acids in interneurons of stratum pyramidale of the CA1 region of rat hippocampal slices in vitro. , 1991, Journal of neurophysiology.

[194]  S. W. Kuffler,et al.  GAMMA-AMINOBUTYRIC ACID AND OTHER BLOCKING COMPOUNDS IN CRUSTACEA. III. THEIR RELATIVE CONCENTRATIONS IN SEPARATED MOTOR AND INHIBITORY AXONS. , 1963, Journal of neurophysiology.

[195]  K. H. Backus,et al.  Aspartate, glutamate and γ-aminobutyric acid depolarize cultured astrocytes , 1984, Neuroscience Letters.

[196]  E. Florey An inhibitory and an excitatory factor of mammalian central nervous system, and their action of a single sensory neuron. , 1954, Archives internationales de physiologie.

[197]  Z. Šimonová,et al.  K+ and pH homeostasis in the developing rat spinal cord is impaired by early postnatal X-irradiation , 1992, Brain Research.

[198]  J. Huguenard,et al.  Whole-cell voltage-clamp study of the fading of GABA-activated currents in acutely dissociated hippocampal neurons. , 1986, Journal of neurophysiology.

[199]  J. Voipio,et al.  Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance , 1987, Nature.

[200]  B. Ransom Glial modulation of neural excitability mediated by extracellular pH: a hypothesis. , 1992, Progress in brain research.

[201]  D. Tank,et al.  Optical imaging of calcium accumulation in hippocampal pyramidal cells during synaptic activation , 1989, Nature.

[202]  R L Macdonald,et al.  Antiepileptic Drug Actions , 1989, Epilepsia.

[203]  M. Frosch,et al.  Desensitization of GABA-activated currents and channels in cultured cortical neurons , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[204]  K. Krnjević,et al.  Chemical Nature of Synaptic Transmission in Vertebrates , 1974 .

[205]  U. Heinemann,et al.  Activity-dependent ionic changes and neuronal plasticity in rat hippocampus. , 1990, Progress in brain research.

[206]  W. Boron,et al.  Arginine vasopressin enhances pHi regulation in the presence of HCO−3 by stimulating three acid-base transport systems , 1989, Nature.

[207]  M. Dichter,et al.  Desensitization of GABA-induced currents in cultured rat hippocampal neurons , 1992, Neuroscience.

[208]  S. Cull-Candy,et al.  Whole‐cell current noise produced by excitatory and inhibitory amino acids in large cerebellar neurones of the rat. , 1989, The Journal of physiology.

[209]  H McLennan,et al.  Antagonism between bicuculline and GABA in the cat brain. , 1971, Brain research.

[210]  C. Sherrington Integrative Action of the Nervous System , 1907 .

[211]  J. Kapur,et al.  Loss of inhibition precedes delayed spontaneous seizures in the hippocampus after tetanic electrical stimulation. , 1989, Journal of neurophysiology.

[212]  A. Draguhn,et al.  GABAA-receptor expressed from rat brain α- and β-subunit cDNAs displays potentiation by benzodiazepine receptor ligands , 1990 .

[213]  Pd Dr. Daniel Ammann Ion-Selective Microelectrodes , 1986, Advances in Exprerimental Medicine and Biology.

[214]  H. Higashi,et al.  Characterization and ionic basis of GABA‐induced depolarizations recorded in vitro from cat primary afferent neurones. , 1978, The Journal of physiology.

[215]  R. Horn,et al.  Muscarinic activation of ionic currents measured by a new whole-cell recording method , 1988, The Journal of general physiology.

[216]  A. Takeuchi,et al.  On the permeability of the presynaptic terminal of the crayfish neuromuscular junction during synaptic inhibition and the action of γ‐aminobutyric acid , 1966, The Journal of physiology.

[217]  J. Awapara,et al.  FREE γ-AMINOBUTYRIC ACID IN BRAIN , 1950 .

[218]  Shin-Ho Chung,et al.  Release of endogenous Zn2+ from brain tissue during activity , 1984, Nature.

[219]  A. Constanti,et al.  Differential effect of zinc on the vertebrate GABAA‐receptor complex , 1990, British journal of pharmacology.

[220]  A. Thomson Biphasic responses of thalamic neurons to GABA in isolated rat brain slices—II , 1988, Neuroscience.

[221]  D. Gruol,et al.  Hydrogen ions have multiple effects on the excitability of cultured mammalian neurons , 1980, Brain Research.

[222]  A. Konnerth,et al.  Patch clamp techniques used for studying synaptic transmission in slices of mammalian brain. , 1989, Quarterly journal of experimental physiology.

[223]  R K Wong,et al.  Sustained dendritic gradients of Ca2+ induced by excitatory amino acids in CA1 hippocampal neurons. , 1988, Science.

[224]  G. Eisenman,et al.  Cation selective glass electrodes and their mode of operation. , 1962, Biophysical journal.

[225]  S. Paul,et al.  Characterization of steroid interactions with gamma-aminobutyric acid receptor-gated chloride ion channels: evidence for multiple steroid recognition sites. , 1990, Molecular pharmacology.

[226]  B. Sakmann,et al.  Functional and molecular distinction between recombinant rat GABAA receptor subtypes by Zn2+ , 1990, Neuron.

[227]  Wilfred D. Stein,et al.  Transport and Diffusion Across Cell Membranes , 1986 .

[228]  R. Twyman,et al.  Barbiturate regulation of kinetic properties of the GABAA receptor channel of mouse spinal neurones in culture. , 1989, The Journal of physiology.

[229]  H. Kettenmann Chloride Channels and Carriers in Cultured Glial Cells , 1990 .

[230]  M. Rasminsky,et al.  A model for the mode of action of GABA on primary afferent terminals: depolarizing effects of GABA applied iontophoretically to neurones of mammalian dorsal root ganglia. , 1974, Neuropharmacology.

[231]  B. MacVicar,et al.  Identification of a GABA-activated chloride-mediated synaptic potential in rat pars intermedia , 1989, Brain Research.

[232]  S. Mcguirk,et al.  Modulation of divalent cation‐activated chloride ion currents , 1988, British journal of pharmacology.

[233]  E. Florey,et al.  ISOLATION OF FACTOR I , 1957, Journal of neurochemistry.

[234]  J. Voipio,et al.  Inward current caused by sodium‐dependent uptake of GABA in the crayfish stretch receptor neurone. , 1992, The Journal of physiology.

[235]  R. Nicoll,et al.  Comparison of the action of baclofen with gamma‐aminobutyric acid on rat hippocampal pyramidal cells in vitro. , 1985, The Journal of physiology.

[236]  K. Magleby,et al.  Gating scheme for single GABA-activated Cl- channels determined from stability plots, dwell-time distributions, and adjacent-interval durations , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[237]  P. Krogsgaard‐Larsen GABA synaptic mechanisms: Stereochemical and conformational requirements , 1988, Medicinal research reviews.

[238]  M. Mayer,et al.  The action of zinc on synaptic transmission and neuronal excitability in cultures of mouse hippocampus. , 1989, The Journal of physiology.

[239]  R. Huganir,et al.  GABAA receptors are differentially sensitive to zinc: dependence on subunit composition , 1991, British journal of pharmacology.

[240]  Daniel Johnston,et al.  Biophysics and Microphysiology of Synaptic Transmission in Hippocampus , 1984 .

[241]  T. Yakushiji,et al.  Augmentation of GABA-induced chloride current in frog sensory neurons by diazepam , 1989, Neuroscience Research.

[242]  P. Shinnick‐Gallagher,et al.  The effects of temperature, pH and Cl-pump inhibitors on GABA responses recorded from cat dorsal root ganglia , 1983, Brain Research.

[243]  K. Kaila,et al.  Modulation of pH by neuronal activity , 1992, Trends in Neurosciences.

[244]  Jean-Luc Galzi,et al.  Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic , 1992, Nature.

[245]  G. Westbrook,et al.  Noncompetitive inhibition of gamma-aminobutyric acidA channels by Zn. , 1991, Molecular pharmacology.

[246]  W. Walz,et al.  Sodium- and bicarbonate-independent regulation of intracellular pH in cultured mouse astrocytes , 1990, Neuroscience Letters.

[247]  N. Unwin The structure of ion channels in membranes of excitable cells , 1989, Neuron.

[248]  J. Deitmer Electrogenic sodium-dependent bicarbonate secretion by glial cells of the leech central nervous system , 1991, The Journal of general physiology.

[249]  D. Corey,et al.  Ion channels in vertebrate glia. , 1990, Annual review of neuroscience.

[250]  D. Chesnoy-Marchais Hyperpolarization-Activated Chloride Channels in Aplysia Neurons , 1990 .

[251]  H. Gerschenfeld,et al.  Chemical transmission in invertebrate central nervous systems and neuromuscular junctions. , 1973, Physiological reviews.

[252]  E. Cherubini,et al.  Strychnine‐sensitive glycine responses of neonatal rat hippocampal neurones. , 1991, The Journal of physiology.

[253]  J. Barker,et al.  GABA analogues activate channels of different duration on cultured mouse spinal neurons. , 1981, Science.

[254]  C. Edwards,et al.  The anion selectivity of the γ-aminobutyric acid controlled chloride channel in the perfused spinal ganglion cell of frog , 1986, Neuroscience Research.

[255]  W. Schlue,et al.  The regulation of intracellular pH by identified glial cells and neurones in the central nervous system of the leech. , 1987, The Journal of physiology.

[256]  P. Seeburg,et al.  A single histidine in GABAA receptors is essential for benzodiazepine agonist binding. , 1992, The Journal of biological chemistry.

[257]  P. Lutz Mechanisms for anoxic survival in the vertebrate brain. , 1992, Annual review of physiology.

[258]  R. Nicoll,et al.  Selective action of piretanide on primary afferent GABA responses in the frog spinal cord , 1982, Brain Research.

[259]  E. Kravitz,et al.  Release of gamma-aminobutyric acid from inhibitory nerves of lobster. , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[260]  徳冨 直史 Contribution of chloride shifts to the fade of γ-aminobutyric acid-gated currents in frog dorsal root ganglion cells , 1988 .

[261]  M. Pirchio,et al.  Cl‐ ‐ and K+‐dependent inhibitory postsynaptic potentials evoked by interneurones of the rat lateral geniculate nucleus. , 1988, The Journal of physiology.

[262]  R. Thomas Review Lecture: Experimental displacement of intracellular pH and the mechanism of its subsequent recovery. , 1984, The Journal of physiology.

[263]  R. Butterworth,et al.  Neurochemical and electrophysiological studies on the inhibitory effect of ammonium ions on synaptic transmission in slices of rat hippocampus: Evidence for a postsynaptic action , 1990, Neuroscience.

[264]  B. Siesjö,et al.  Acidosis and ischemic brain damage. , 1988, Neurochemical pathology.

[265]  L. Sivilotti,et al.  The effect of GABA on the frog optic tectum is sensitive to ammonium and to penicillin. , 1990, European journal of pharmacology.

[266]  N. Slater,et al.  Activation of NMDA receptors blocks GABAergic inhibition in an in vitro model of epilepsy , 1987, Nature.

[267]  K. Onodera,et al.  Effect of bicuculline on the GABA receptor of the crayfish neuromuscular junction. , 1972, Nature: New biology.

[268]  B. Sakmann,et al.  Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels , 1981, Nature.

[269]  S. Paul,et al.  Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. , 1986, Science.

[270]  R. Thomas The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones. , 1976, The Journal of physiology.

[271]  R. Miledi,et al.  Characterization of bicuculline/baclofen-insensitive gamma-aminobutyric acid receptors expressed in Xenopus oocytes. I. Effects of Cl- channel inhibitors. , 1992, Molecular pharmacology.

[272]  W Zieglgänsberger,et al.  Baclofen reduces post‐synaptic potentials of rat cortical neurones by an action other than its hyperpolarizing action. , 1987, The Journal of physiology.

[273]  G Bernardi,et al.  GABA depolarizes neurons in the rat striatum: An in vivo study , 1991, Synapse.

[274]  J. Gaiarsa,et al.  GABA mediated excitation in immature rat CA3 hippocampal neurons , 1990, International Journal of Developmental Neuroscience.

[275]  H. Dodt,et al.  The role of chloride transport in postsynaptic inhibition of hippocampal neurons. , 1986, Science.

[276]  N. Bowery GABAB receptors and their significance in mammalian pharmacology. , 1989, Trends in pharmacological sciences.

[277]  W. Nonner,et al.  Anion and cation permeability of a chloride channel in rat hippocampal neurons , 1987, The Journal of general physiology.

[278]  Ca2+-mediated suppression of the GABA-response through modulation of chloride channel gating in frog sensory neurones , 1988, Neuroscience Letters.

[279]  N. Ogata γ-Aminobutyric acid (GABA) causes consistent depolarization of neurons in the guinea pig supraoptic nucleus due to an absence of GABAB recognition sites , 1987, Brain Research.

[280]  M. Santi,et al.  Neurosteroids act on recombinant human GABAA receptors , 1990, Neuron.

[281]  R. J. Miller,et al.  Multiple calcium channels and neuronal function. , 1987, Science.

[282]  J. Eccles,et al.  PRESYNAPTIC INHIBITION IN THE SPINAL CORD. , 1964, Progress in brain research.

[283]  R. Llinás,et al.  Blockage of inhibition by ammonium acetate action on chloride pump in cat trochlear motoneurons. , 1974, Journal of neurophysiology.

[284]  B. Barres,et al.  New roles for glia , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[285]  R. Thomas,et al.  The effects of chloride substitution on intracellular pH in crab muscle. , 1981, Journal of Physiology.

[286]  T Oshima,et al.  The anionic permeability of the inhibitory postsynaptic membrane of hippocampal pyramidal cells , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[287]  B. Gähwiler Organotypic monolayer cultures of nervous tissue , 1981, Journal of Neuroscience Methods.

[288]  W. Cammer Carbonic Anhydrase in Myelin and Glial Cells in the Mammalian Central Nervous System , 1991 .

[289]  H. Kimelberg Chloride Transport across Glial Membranes , 1990 .

[290]  R. Nicoll,et al.  The pharmacology of recurrent inhibition in the supraoptic neurosecretory system. , 1971, Brain research.

[291]  A. Guidotti,et al.  Terminology for ligands of the allosteric modulatory center of GABA-operated Cl- channels. , 1988, Advances in biochemical psychopharmacology.

[292]  C. Nicholson,et al.  Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. , 1981, The Journal of physiology.

[293]  P. Seeburg,et al.  Molecular biology of the GABAA receptor: the receptor/channel superfamily , 1987, Trends in Neurosciences.

[294]  R. Wong,et al.  GABAA receptor function is regulated by phosphorylation in acutely dissociated guinea‐pig hippocampal neurones. , 1990, The Journal of physiology.

[295]  G. A. Kerkut,et al.  THE EFFECT OF ANION INJECTION AND CHANGES IN THE EXTERNAL POTASSIUM AND CHLORIDE CONCENTRATION ON THE REVERSAL POTENTIALS OF THE IPSP AND ACETYLCHOLINE. , 1964, Comparative biochemistry and physiology.

[296]  T. Yakushiji,et al.  Influences of external Ca2+ on the GABA-induced chloride current and the efficacy of diazepam in internally perfused frog sensory neurons , 1989, Brain Research.

[297]  W. Schlue,et al.  Glial H+ Transport and Control of pH , 1991, Annals of the New York Academy of Sciences.

[298]  D. S. Weiss Membrane potential modulates the activation of GABA-gated channels. , 1988, Journal of neurophysiology.

[299]  D. Mathers Activation and inactivation of the GABAA receptor: insights from comparison of native and recombinant subunit assemblies. , 1991, Canadian journal of physiology and pharmacology.

[300]  B. L. Ginsborg THE PHYSIOLOGY OF SYNAPSES , 1964 .

[301]  A. Blatz Properties of single fast chloride channels from rat cerebral cortex neurons. , 1991, The Journal of physiology.

[302]  B H Gähwiler,et al.  Activity-dependent disinhibition. III. Desensitization and GABAB receptor-mediated presynaptic inhibition in the hippocampus in vitro. , 1989, Journal of neurophysiology.

[303]  L. Trussell,et al.  Glutamate receptor desensitization and its role in synaptic transmission , 1989, Neuron.

[304]  R. Nicoll,et al.  The coupling of neurotransmitter receptors to ion channels in the brain. , 1988, Science.

[305]  J. Voipio,et al.  Influence of extracellular and intracellular pH on GABA-gated chloride conductance in crayfish muscle fibres , 1992, Neuroscience.

[306]  K L Magleby,et al.  The effect of voltage on the time course of end‐plate currents , 1972, The Journal of physiology.

[307]  B. Alger,et al.  Use-dependent depression of IPSPs in rat hippocampal pyramidal cells in vitro. , 1985, Journal of neurophysiology.

[308]  F. Bloom,et al.  Localizing 3H-GABA in Nerve Terminals of Rat Cerebral Cortex by Electron Microscopic Autoradiography , 1971, Nature.

[309]  F. Alvarez-Leefmans,et al.  Intracellular chloride regulation in amphibian dorsal root ganglion neurones studied with ion‐selective microelectrodes. , 1988, The Journal of physiology.

[310]  J. Barker,et al.  Fluctuation analysis of neutral amino acid responses in cultured mouse spinal neurones. , 1982, The Journal of physiology.

[311]  N. L. Chamberlin,et al.  Amino acid receptors and uptake systems in the mammalian central nervous system. , 1988, Critical reviews in neurobiology.

[312]  G. Pocock,et al.  Hydrogen Ion Regulation in Rat Cerebellar Granule Cells Studied by Single‐Cell Fluorescence Microscopy , 1992, The European journal of neuroscience.

[313]  Divalent cations reduce depolarization of primary afferent terminations by GABA , 1987, Brain Research.

[314]  C. Inagaki,et al.  Histochemical demonstration of Cl−-ATPase in rat spinal motoneurons , 1987, Brain Research.

[315]  A. Marty,et al.  Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents , 1991, Neuron.

[316]  A. Hansen,et al.  Effect of anoxia on ion distribution in the brain. , 1985, Physiological reviews.

[317]  H. Jahnsen,et al.  The dendritic response to GABA in CA1 of the hippocampal slice , 1981, Brain Research.

[318]  R. Sorenson,et al.  Structural and Functional Considerations of GABA in Islets of Langerhans: β-Cells and Nerves , 1991, Diabetes.

[319]  M. Mayer,et al.  Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons , 1987, Nature.

[320]  B. Sakmann,et al.  Functional properties of recombinant rat GABAA receptors depend upon subunit composition , 1990, Neuron.

[321]  J. Bormann Electrophysiology of GABAA and GABAB receptor subtypes , 1988, Trends in Neurosciences.

[322]  H. Lux,et al.  The role of intracellular chloride in hyperpolarizing post‐synaptic inhibition of crayfish stretch receptor neurones , 1982, The Journal of physiology.

[323]  A. Takeuchi,et al.  A study of the action of picrotoxin on the inhibitory neuromuscular junction of the crayfish , 1969, The Journal of physiology.

[324]  I. Módy,et al.  Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABAA receptor-mediated postsynaptic conductance. , 1992, Journal of neurophysiology.

[325]  P. Andersen,et al.  Two different responses of hippocampal pyramidal cells to application of gamma‐amino butyric acid. , 1980, The Journal of physiology.

[326]  C. Stevens,et al.  Voltage clamp analysis of acetylcholine produced end‐plate current fluctuations at frog neuromuscular junction , 1973, The Journal of physiology.

[327]  P. Rorsman,et al.  Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels , 1989, Nature.

[328]  H. Robinson,et al.  A voltage-clamp study of the effects of Joro spider toxin and zinc on excitatory synaptic transmission in CA1 pyramidal cells of the guinea pig hippocampal slice , 1991, Neuroscience Research.

[329]  M. Astion,et al.  Electrogenic Na+/HCO3−cotransport in neuroglia , 1988, Glia.

[330]  A. Roepstorff,et al.  Comparison of the effect of the GABA uptake blockers, tiagabine and nipecotic acid, on inhibitory synaptic efficacy in hippocampal CA1 neurones , 1992, Neuroscience Letters.

[331]  A S Verkman,et al.  Synthesis and characterization of improved chloride-sensitive fluorescent indicators for biological applications. , 1989, Analytical biochemistry.

[332]  M. Duchen,et al.  The anion selectivity of GABA-mediated post-synaptic potentials in mouse hippocampal cells. , 1985, Quarterly journal of experimental physiology.

[333]  B. Connors,et al.  Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor‐mediated responses in neocortex of rat and cat. , 1988, The Journal of physiology.

[334]  D. Laurie,et al.  Expression patterns of GABAA receptor subtypes in developing hippocampal neurons , 1991, Neuron.

[335]  H. Kettenmann,et al.  GABA-activated Cl- channels in astrocytes of hippocampal slices , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[336]  R. Huganir,et al.  Functional modulation of GABAA receptors by cAMP-dependent protein phosphorylation. , 1992, Science.

[337]  J. Eccles,et al.  The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post‐synaptic potential , 1955, The Journal of physiology.

[338]  B Katz,et al.  The statistical nature of the acetylcholine potential and its molecular components , 1972, The Journal of physiology.

[339]  J. Voipio,et al.  Intrinsic proton modulation of excitatory transmission in rat hippocampal slices. , 1993, Neuroreport.

[340]  H. Higashi,et al.  Synaptic responses of guinea pig cingulate cortical neurons in vitro. , 1991, Journal of neurophysiology.

[341]  H. Kettenmann,et al.  Carrier‐mediated Cl− transport in cultured mouse oligodendrocytes , 1989, Journal of neuroscience research.

[342]  Y. Takagi,et al.  An ATP-driven Cl- pump in the brain. , 1989, The Journal of biological chemistry.

[343]  R. Miller,et al.  Measurement of passive membrane parameters with whole-cell recording from neurons in the intact amphibian retina. , 1989, Journal of neurophysiology.

[344]  I. M. Sechenov Physiologische Studien über die Hemmungsmechanismen für die Reflexthätigkeit des Rückenmarks im Gehirne des Frosches , 2022 .

[345]  P. Usherwood,et al.  Sequence of a functional invertebrate GABAA receptor subunit which can form a chimeric receptor with a vertebrate alpha subunit. , 1991, The EMBO journal.

[346]  M. Foster A TEXT-BOOK OF PHYSIOLOGY , .

[347]  L. Sivilotti,et al.  Pharmacology of a novel effect of γ-aminobutyric acid on the frog optic tectum in vitro , 1989 .

[348]  M. Avoli,et al.  A GABAergic depolarizing potential in the hippocampus disclosed by the convulsant 4-aminopyridine , 1987, Brain Research.

[349]  D. A. Brown,et al.  Actions of gamma‐aminobutyric acid on sympathetic ganglion cells. , 1975, The Journal of physiology.

[350]  M. Ito,et al.  Anion permeability of the synaptic and non‐synaptic motoneurone membrane , 1961, The Journal of physiology.

[351]  E. Wright,et al.  Biological membranes: the physical basis of ion and nonelectrolyte selectivity. , 1969, Annual review of physiology.

[352]  J. Barker,et al.  Chemically induced ion channels in nerve cell membranes. , 1982, International review of neurobiology.

[353]  J. Iles,et al.  Ammonia: assessment of its action on postsynaptic inhibition as a cause of convulsions. , 1980, Brain : a journal of neurology.

[354]  J. Voipio,et al.  Effect of gamma-aminobutyric acid on intracellular pH in the crayfish stretch-receptor neurone. , 1991, The Journal of experimental biology.

[355]  N. Harrison,et al.  Induction of giant depolarizing potentials by zinc in area CA1 of the rat hippocampus does not result from block of GABAB receptors , 1992, Neuroscience Letters.

[356]  C. Bührle,et al.  The ionic mechanism of postsynaptic inhibition in motoneurones of the frog spinal cord , 1985, Neuroscience.

[357]  C. Nicholson,et al.  Alkaline and acid transients in cerebellar microenvironment. , 1983, Journal of neurophysiology.

[358]  I. Zagon,et al.  Brain membrane protein band 3 performs the same functions as erythrocyte band 3. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[359]  M. Lazdunski,et al.  The Na+/H+ exchange system in glial cell lines. Properties and activation by an hyperosmotic shock. , 1986, European journal of biochemistry.

[360]  D. Tauck,et al.  Characterization of GABA- and glycine-induced currents of solitary rodent retinal ganglion cells in culture , 1988, Neuroscience.

[361]  B. Sakmann,et al.  Mechanism of anion permeation through channels gated by glycine and gamma‐aminobutyric acid in mouse cultured spinal neurones. , 1987, The Journal of physiology.

[362]  Y. Ben-Ari,et al.  Giant synaptic potentials in immature rat CA3 hippocampal neurones. , 1989, The Journal of physiology.

[363]  J. Voipio,et al.  Intracellular carbonic anhydrase activity and its role in GABA-induced acidosis in isolated rat hippocampal pyramidal neurones. , 1993, Acta physiologica Scandinavica.

[364]  T. Yakushiji,et al.  Intracellular calcium ions decrease the affinity of the GABA receptor , 1986, Nature.

[365]  D. Middlemiss,et al.  (–)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor , 1980, Nature.

[366]  J. Neubauer Carbonic Anhydrase and Sensory Function in the Central Nervous System , 1991 .

[367]  I. Inoue Voltage-dependent chloride conductance of the squid axon membrane and its blockade by some disulfonic stilbene derivatives , 1985, The Journal of general physiology.

[368]  G. Fain,et al.  GABA and glycine channels in isolated ganglion cells from the goldfish retina. , 1989, The Journal of physiology.

[369]  M. Mayer,et al.  Calcium-Dependent Chloride Currents in Vertebrate Central Neurons , 1990 .

[370]  Intracellular pH regulation in the sensory neurone of the stretch receptor of the crayfish (Astacus fluviatilis). , 1985, The Journal of physiology.

[371]  D. Prince,et al.  Postnatal maturation of the GABAergic system in rat neocortex. , 1991, Journal of neurophysiology.

[372]  A. Takeuchi,et al.  Localized action of gamma‐aminobutyric acid on the crayfish muscle , 1965, The Journal of physiology.

[373]  A. Constanti,et al.  Pre- and postsynaptic effects of zinc on in vitro prepyriform neurones , 1983, Neuroscience Letters.

[374]  D. M. Wright,et al.  Zinc: effect and interaction with other cations in the cortex of the rat , 1984, Brain Research.

[375]  E Syková,et al.  Extracellular K+ accumulation in the central nervous system. , 1983, Progress in biophysics and molecular biology.

[376]  R. Wong,et al.  Excitatory synaptic responses mediated by GABAA receptors in the hippocampus , 1991, Science.

[377]  E. Barkai,et al.  High CO2-bicarbonate buffer modifies GABAergic inhibitory effect at the crayfish neuromuscular synapse , 1991, Brain Research.

[378]  T. Smart A novel modulatory binding site for zinc on the GABAA receptor complex in cultured rat neurones. , 1992, The Journal of physiology.

[379]  Y. Morita,et al.  GABA inhibits the rise in cytosolic free calcium concentration in depolarized immature cerebellar Purkinje cells , 1991, Neuroscience Letters.

[380]  K. H. Backus,et al.  Effect of benzodiazepines and pentobarbital on the GABA‐induced depolarization in cultured astrocytes , 1988, Glia.

[381]  D. R. Curtis,et al.  The depression of spinal neurones by γ‐amino‐n‐butyric acid and β‐alanine , 1959 .

[382]  M. Lazdunski,et al.  The regulation of the intracellular pH in cells from vertebrates. , 1988, European journal of biochemistry.

[383]  B. Gähwiler,et al.  Activity-dependent disinhibition. I. Repetitive stimulation reduces IPSP driving force and conductance in the hippocampus in vitro. , 1989, Journal of neurophysiology.

[384]  Y. Kudo,et al.  Alteration of extracellular K+-activity induced by amino acids in the frog spinal cord. , 1976, Japanese journal of pharmacology.

[385]  L. Limbird,et al.  Na(+)-H+ exchanger subtypes: a predictive review. , 1991, The American journal of physiology.

[386]  P. Seeburg,et al.  Transient expression shows ligand gating and allosteric potentiation of GABAA receptor subunits. , 1988, Science.

[387]  J. Barker,et al.  Rat hippocampal neurons in culture: properties of GABA-activated Cl- ion conductance. , 1984, Journal of neurophysiology.

[388]  U. Klotz,et al.  Occurrence of 'natural' diazepam in human brain. , 1990, Biochemical pharmacology.

[389]  C. Nicholson Dynamics of the brain cell microenvironment. , 1980, Neurosciences Research Program bulletin.

[390]  T. Smart Uncultured Lobster Muscle, Cultured Neurons and Brain Slices: the Neurophysiology of Zinc * , 1990, The Journal of pharmacy and pharmacology.

[391]  G. Fagg,et al.  Amino acid neurotransmitters and their pathways in the mammalian central nervous system , 1983, Neuroscience.

[392]  A. Guidotti,et al.  Diazepam-binding inhibitor: a neuropeptide located in selected neuronal populations of rat brain. , 1985, Science.

[393]  E. Roberts,et al.  gamma-Aminobutyric acid in brain: its formation from glutamic acid. , 1950, The Journal of biological chemistry.

[394]  gamma-Aminobutyric acidA receptor desensitization in mice spinal cord cultured neurons: lack of involvement of protein kinases A and C. , 1990, Molecular pharmacology.

[395]  J. Wolff,et al.  γ‐Aminobutyric Acid Outside the Mammalian Brain , 1990 .

[396]  B. Katz,et al.  The characteristics of ‘end‐plate noise’ produced by different depolarizing drugs , 1973, The Journal of physiology.

[397]  R. Twyman,et al.  Neurosteroid regulation of GABAA receptor single‐channel kinetic properties of mouse spinal cord neurons in culture. , 1992, The Journal of physiology.

[398]  P. Schwartzkroin,et al.  Effects of GABA and baclofen on pyramidal cells in the developing rabbit hippocampus: an 'in vitro' study. , 1988, Brain research.

[399]  J. Bormann,et al.  Patch-clamp study of gamma-aminobutyric acid receptor Cl- channels in cultured astrocytes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[400]  H. Kettenmann,et al.  Differential benzodiazepine pharmacology of mammalian recombinant GABAA receptors , 1990, Neuroscience Letters.

[401]  N. Bowery,et al.  3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain , 1981, Nature.

[402]  P. Usherwood,et al.  Rapid activation and desensitization by glutamate of excitatory, cation-selective channels in locust muscle , 1988, Neuroscience Letters.

[403]  R. Nicoll,et al.  Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. , 1990, Physiological reviews.

[404]  C. Nicholson,et al.  The Migration of Substances in the Neuronal Microenvironment a , 1986, Annals of the New York Academy of Sciences.

[405]  Gerhard Trube,et al.  The effect of subunit composition of rat brain GABAA receptors on channel function , 1990, Neuron.

[406]  K. H. Backus,et al.  γ-Aminobutyric acid opens Cl-channels in cultured astrocytes , 1987, Brain Research.

[407]  J. Hablitz,et al.  cAMP increases the rate of GABAA receptor desensitization in chick cortical neurons , 1989, Synapse.

[408]  R. Keynes Chloride in the squid giant axon , 1963, The Journal of physiology.

[409]  S. Galler,et al.  The ionic mechanism of intracellular pH regulation in crayfish muscle fibres. , 1986, The Journal of physiology.

[410]  R Llinás,et al.  Microdomains of high calcium concentration in a presynaptic terminal. , 1992, Science.

[411]  J. Voipio,et al.  Postsynaptic fall in intracellular pH and increase in surface ph caused by efflux of formate and acetate anions through GABA-gated channels in crayfish muscle fibres , 1990, Neuroscience.

[412]  E. Barnard,et al.  Unusual effects of benzodiazepines and cyclodiene insecticides on an expressed invertebrate GABAA receptor , 1992, FEBS letters.

[413]  J. Connor,et al.  Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses , 1991, Nature.

[414]  Y. Ben-Ari,et al.  Benzodiazepines do not potentiate GABA responses in neonatal hippocampal neurons , 1991, Neuroscience Letters.

[415]  P. Rakić,et al.  Developmental expression of GABA and subunits of the GABAA receptor complex in an inhibitory synaptic circuit in the rat cerebellum. , 1990, Brain research. Developmental brain research.

[416]  J. Eccles,et al.  Effects of intracellular potassium and sodium injections on the inhibitory postsynaptic potential , 1964, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[417]  G. Danscher,et al.  Zinc-containing neurons in hippocampus and related CNS structures. , 1990, Progress in brain research.

[418]  P. Grafe,et al.  Ion activities and potassium uptake mechanisms of glial cells in guinea‐pig olfactory cortex slices. , 1987, The Journal of physiology.

[419]  E. Puil,et al.  Effects of hypomagnesia on transmitter actions in neocortical slices , 1990, British journal of pharmacology.

[420]  D. Prince,et al.  Outward chloride/cation co-transport in mammalian cortical neurons , 1988, Neuroscience Letters.

[421]  H. Atwood,et al.  Organization and synaptic physiology of crustacean neuromuscular systems , 1976, Progress in Neurobiology.

[422]  H Korn,et al.  Single-shot channel activation accounts for duration of inhibitory postsynaptic potentials in a central neuron. , 1980, Science.

[423]  N. Porter,et al.  Cloned GABA receptors are maintained in a stable cell line: allosteric and channel properties. , 1990, European journal of pharmacology.

[424]  E. Kandel,et al.  Electrophysiology of hippocampal neurons. I. Sequential invasion and synaptic organization. , 1961, Journal of neurophysiology.