A Fast Detector of Line Images Acquired by an Uncalibrated Paracatadioptric Camera

We propose a new method to simultaneously detect the images of lines acquired by an uncalibrated paracatadioptric camera and estimate its parameters. This method is very efficient thanks to our new linear formulation of the constraint for the paracatadioptric line images and to some proposed algorithmic improvements. The line images that are straight lines and circular arcs are detected similarly, after being projected to a virtual paraboloid. Robust estimation methods are then used to find which detected line images are consistent with the best set of camera parameters. We provide experimental results that demonstrate the efficiency and robustness of the proposed method

[1]  Kostas Daniilidis,et al.  Catadioptric Projective Geometry , 2001, International Journal of Computer Vision.

[2]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[3]  Zhengyou Zhang,et al.  Determining the Epipolar Geometry and its Uncertainty: A Review , 1998, International Journal of Computer Vision.

[4]  Kostas Daniilidis,et al.  Paracatadioptric Camera Calibration , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Jon Rigelsford Panoramic Vision: Sensors, Theory and Applications , 2002 .

[6]  Kostas Daniilidis,et al.  A Unifying Theory for Central Panoramic Systems and Practical Applications , 2000, ECCV.

[7]  Hongbin Zha,et al.  Simultaneously calibrating catadioptric camera and detecting line features using Hough transform , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[9]  Wei Zhang,et al.  Video Compass , 2002, ECCV.

[10]  Kostas Daniilidis,et al.  Linear Pose Estimation from Points or Lines , 2002, ECCV.

[11]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[12]  Andrew J. Davison,et al.  A visual compass based on SLAM , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[13]  Helder Araújo,et al.  Geometric Properties of Central Catadioptric Line Images , 2002, ECCV.

[14]  Tomás Svoboda,et al.  Epipolar Geometry for Central Catadioptric Cameras , 2002, International Journal of Computer Vision.

[15]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Frank Dellaert,et al.  Line-Based Structure from Motion for Urban Environments , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[17]  S. Shankar Sastry,et al.  Radon-based structure from motion without correspondences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[18]  Kostas Daniilidis,et al.  Properties of the Catadioptric Fundamental Matrix , 2002, ECCV.

[19]  H. Ishiguro,et al.  Panoramic Vision , 2001, Monographs in Computer Science.

[20]  Pierre Gurdjos,et al.  A New Linear Calibration Method for Paracatadioptric Cameras , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[21]  Radu Horaud,et al.  Visual Servoing/Tracking Using Central Catadioptric Images , 2002, ISER.

[22]  Domenico Prattichizzo,et al.  EGT for multiple view geometry and visual servoing: robotics vision with pinhole and panoramic cameras , 2005, IEEE Robotics & Automation Magazine.

[23]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[24]  George J. Pappas,et al.  Leader-Follower Formations: Uncalibrated Vision-Based Localization and Control , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[25]  Pascal Vasseur,et al.  Central Catadioptric Line Detection , 2004, BMVC.