The NASA low thrust propulsion program

The NASA OAST Propulsion, Power, and Energy Division supports a low thrust propulsion program aimed at providing high performance options for a broad range of near-term and far-term mission and vehicles. Low thrust propulsion has a major impact on the mission performance of essentially all spacecraft and vehicles. On-orbit lifetimes, payloads, and trip times are significantly impacted by low thrust propulsion performance and integration features for Earth-to-orbit (ETO) vehicles, Earth-orbit and planetary spacecraft, and large platforms in Earth orbit. Major emphases are on low thrust chemical propulsion, both storables and hydrogen/oxygen; low-power (auxiliary) electric arcjects and resistojets; and high-power (primary) electric propulsion, including ion, magnetoplasmadynamic (MPD), and electrodeless concepts. The major recent accomplishments of the program are presented and their impacts discussed.

[1]  Robert P. Gruber Resistojet control and power for high frequency ac buses , 1987 .

[2]  B. J. Heckert,et al.  A 25-LBF gaseous oxygen/gaseous hydrogen thruster for space station application , 1986 .

[3]  J. R. Hull,et al.  Application of superconducting technology to Earth-to-orbit electromagnetic launch systems , 1989 .

[4]  C. B. Reed,et al.  Use of high temperature superconductors in magnetoplasmadynamic systems , 1988 .

[5]  Vincent K. Rawlin,et al.  Internal erosion rates of a 10-kW xenon ion thruster , 1988 .

[6]  J. M. Senneff,et al.  A long-life 50 lbf H2/O2 thruster for Space Station auxiliary propulsion , 1986 .

[7]  S. Rosenthal,et al.  A proven 25-lbF H2/O2 thruster for Space Station auxiliary propulsion , 1986 .

[8]  Michael J. Patterson,et al.  Performance of 10-kW class xenon ion thrusters , 1988 .

[9]  Jes Asmussen,et al.  Experimental performance of a microwave electrothermal thruster with high temperature nozzle materials , 1987 .

[10]  Monika Auweter-Kurtz,et al.  Numerical Modeling of the Flow Discharge in MPD Thrusters , 1987 .

[11]  Francis M. Curran,et al.  An extended life and performance test of a low-power arcjet , 1988 .

[12]  David J. Hoffman,et al.  Effect of nozzle geometry on the resistojet exhaust plume , 1987 .

[13]  Martin C. Hawley,et al.  A review of research and development on the microwave-plasma electrothermal rocket , 1987 .

[14]  James S. Sovey,et al.  Space station propulsion , 1987 .

[15]  Martin C. Hawley,et al.  The efficacy of heating low-pressure H2 in a microwave discharge , 1987 .

[16]  B. Palaszewski,et al.  Lightweight spacecraft propulsion system selection , 1987 .

[17]  James S. Sovey,et al.  Test Facility and Preliminary Performance of a 100 kW Class MPD Thruster , 1989 .

[18]  L. A. Miller,et al.  Preliminary feasibility assessment for Earth-to-space electromagnetic (Railgun) launchers , 1982 .

[19]  Gregory M. Reck NASA Directions in Space Propulsion for 2000 and Beyond , 1989 .

[20]  Bruce J. Heckert Space station resistojet system requirements and interface definition study , 1987 .

[21]  Michael J. Patterson,et al.  High power ion thruster performance , 1987 .

[22]  James R. Stone,et al.  Development of a liquid-fed water resistojet , 1988 .

[23]  Jes Asmussen,et al.  An analysis of electromagnetic coupling and eigenfrequencies for microwave electrothermal thruster discharges , 1987 .

[24]  R. P. Salazar,et al.  Lunar Get Away Special (GAS) spacecraft , 1987 .

[25]  Steven J. Schneider Auxiliary propulsion technology for advanced Earth-to-orbit vehicles , 1987 .

[26]  R. Schreib Utility of xenon ion stationkeeping , 1986 .

[27]  Charles E. Garner,et al.  Techniques for reduced spalling and increased operating life of xenon ion engines , 1989 .

[28]  John R. Brophy,et al.  Operating characteristics of a 10 kW xenon ion propulsion module , 1987 .

[29]  V. Rich Personal communication , 1989, Nature.

[30]  Martin C. Hawley,et al.  A computer model for the recombination zone of a microwave-plasma electrothermal rocket , 1987 .

[31]  Francis M. Curran,et al.  Arcjet Nozzle Design Impacts , 1989 .

[32]  K. T. Nock,et al.  TAU - A mission to a thousand astronomical units , 1987 .

[33]  Steven J. Schneider,et al.  Weight savings in aerospace vehicles through propellant scavenging , 1988 .

[34]  G. Paul Richter,et al.  Proven, long-life hydrogen/oxygen thrust chambers for space station propulsion , 1986 .

[35]  T. A. Heppenheimer Achromatic trajectories and lunar material transport for space colonization , 1978 .

[36]  Robert A. Wasel,et al.  The NASA Electric Propulsion Program , 1987 .

[37]  Roger M. Myers,et al.  Performance of a 100 kW class applied field MPD thruster , 1989 .

[38]  Marshall A. Appel,et al.  Iridium-coated rhenium thrusters by CVD , 1989 .

[39]  K. Kajiwara,et al.  Ion engine system for North-South station-keeping of engineering test satellite VI , 1987 .

[40]  Bader Potential propellant storage and feed systems for space station resistojet propulsion options. Final report , 1987 .

[41]  Edward P. Braunscheidel Performance characterization and transient investigation of multipropellant resistojets , 1989 .

[42]  S. J. Schneider,et al.  A life test of a 22-Newton (5-lbf) hydrazine rocket , 1987 .

[43]  A. Atzei,et al.  Comet Nucleus Sample Return Mission , 1988 .

[44]  W. R. Kerslake,et al.  Rail accelerators for space transportation: An experimental investigation , 1986 .

[45]  James S. Sovey,et al.  Space Station propulsion system technology , 1987 .

[46]  James R. Stone Recent advances in low-thrust propulsion technology , 1988 .

[47]  J. Sercel Electron-cyclotron-resonance (ECR) plasma thruster research , 1988 .

[48]  Thomas W. Haag,et al.  Design of a thrust stand for high power electric propulsion devices , 1989 .

[49]  L. A. Miller,et al.  Preliminary analysis of space mission applications for electromagnetic launchers , 1984 .

[50]  D. Q. King,et al.  Design and operation of a 100 kW subscale MPD engine , 1987 .

[51]  A. B. Bailey,et al.  Experimental evaluation of resistojet thruster plume shields , 1991 .

[52]  J. Billingham,et al.  Space Resources and Space Settlements , 1979 .

[53]  Stanley P. Grisnik,et al.  Experimental study of low Reynolds number nozzles , 1987 .

[54]  James S. Sovey,et al.  Water-propellant resistojets for man-tended platforms , 1987 .

[55]  Margaret V. Wen Low Reynolds Number Nozzle Flow Study , 1987 .

[56]  A. J. Kelly,et al.  Cathode phenomena in a low power, steady state MPD thruster , 1988 .

[57]  Michael J. Patterson,et al.  Electric Propulsion Options for 10 kW Class Earth-Space Missions , 1989 .

[58]  John R. Brophy,et al.  Ion propulsion system design and throttling strategies for planetary missions , 1988 .

[59]  James S. Sovey,et al.  Performance and lifetime assessment of MPD arc thruster technology , 1988 .

[60]  Roger M. Myers Plume characteristics of MPD thrusters: A preliminary examination , 1989 .