An Efficient Algorithm for Accelerating Monte Carlo Approximations of the Solution to Boundary Value Problems

The numerical approximation of boundary value problems by means of a probabilistic representations often has the drawback that the Monte Carlo estimate of the solution is substantially biased due to the presence of the domain boundary. We introduce a scheme, which we have called the leading-term Monte Carlo regression, which seeks to remove that bias by replacing a ’cloud’ of Monte Carlo estimates—carried out at different discretization levels—for the usual single Monte Carlo estimate. The practical result of our scheme is an acceleration of the Monte Carlo method. Theoretical analysis of the proposed scheme, confirmed by numerical experiments, shows that the achieved speedup can be well over 100.

[1]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[2]  Karl K. Sabelfeld Monte Carlo Methods , 1991 .

[3]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[4]  Desmond J. Higham,et al.  Mean Exit Times and the Multilevel Monte Carlo Method , 2013, SIAM/ASA J. Uncertain. Quantification.

[5]  M. Freidlin,et al.  Functional Integration and Partial Differential Equations. (AM-109), Volume 109 , 1985 .

[6]  F. M. Buchmann Simulation of stopped diffusions , 2005 .

[7]  E. Gobet,et al.  Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme , 2004 .

[8]  Grant D. Lythe,et al.  Exponential Timestepping with Boundary Test for Stochastic Differential Equations , 2003, SIAM J. Sci. Comput..

[9]  E. Gobet,et al.  Stopped diffusion processes: Boundary corrections and overshoot , 2007, 0706.4042.

[10]  Emmanuel Gobet,et al.  Stopped diffusion processes: Overshoots and Boundary correction , 2007 .

[11]  S. Chatterjee,et al.  Regression Analysis by Example , 1979 .

[12]  Piero Lanucara,et al.  Domain Decomposition Solution of Elliptic Boundary-Value Problems via Monte Carlo and Quasi-Monte Carlo Methods , 2005, SIAM J. Sci. Comput..

[13]  Karl K. Sabelfeld Monte Carlo Methods in Boundary Value Problems. , 1991 .

[14]  V. Barnett,et al.  Applied Linear Statistical Models , 1975 .

[15]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[16]  D. Talay,et al.  Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .

[17]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[18]  Francisco Bernal,et al.  A Comparison of Higher-Order Weak Numerical Schemes for Stopped Stochastic Differential Equations , 2015, 1511.07195.

[19]  Riccardo Mannella,et al.  Absorbing boundaries and optimal stopping in a stochastic differential equation , 1999 .

[20]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .