Review on Heat Transfer Mechanisms and Characteristics in Encapsulated PCMs

Latent heat storage (LHS) is a particularly promising technique compared with the conventional sensible heat storage (SHS) as it provides a high-energy storage density with a small volume. However, there are difficulties in practical engineering applications of LHS due to the heat releasing/absorbing, which involves phase transition and moving boundary problems and the unacceptable low thermal conductivity of the phase-change material (PCM). Furthermore, the encapsulation would affect the heat transfer characteristics of PCM significantly, depending on the parameters of various encapsulations and boundary conditions. Hence, this review analyzes heat transfer mechanisms during the phase-change process and numerical analysis for heat transfer in macroencapsulated PCMs according to the shape of containment. The effective heat capacity method and the enthalpy method, two of the most widely used numerical approaches for phase-change problems, are presented in detail. Besides numerical models for different PCM containment such as spherical, rectangular, and cylindrical containment models, PCM-based heat-sink models are reviewed, including several heat transfer enchantment technologies: finned structure and porous matrix. Finally, the challenges in numerical modeling and designing an LHS unit are also summarized in this article.

[1]  M. Lacroix,et al.  NUMERICAL SIMULATION OF NATURAL CONVECTION-DOMINATED MELTING AND SOLIDIFICATION FROM A FINNED VERTICAL WALL , 1997 .

[2]  A. Oliva,et al.  Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction , 1998 .

[3]  S. Sengupta,et al.  The melting process within spherical enclosures , 1987 .

[4]  J. Duffie,et al.  Analysis of collector-storage building walls using phase-change materials , 1991 .

[5]  Kamal Abdel Radi Ismail,et al.  A parametric study on ice formation inside a spherical capsule , 2003 .

[6]  Amir Faghri,et al.  Enhancement of PCM melting in enclosures with horizontally-finned internal surfaces , 2011 .

[7]  Amir Faghri,et al.  Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube , 1996 .

[8]  Amir Faghri,et al.  Transport Phenomena in Multiphase Systems , 2006 .

[9]  Ahmed Elgafy,et al.  Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications , 2008 .

[10]  Ephraim M Sparrow,et al.  Effect of Density Change on Multidimensional Conduction Phase Change , 1976 .

[11]  Changying Zhao,et al.  A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals , 2011 .

[12]  J. Fukai,et al.  Thermal response in thermal energy storage material around heat transfer tubes: effect of additives on heat transfer rates , 2003 .

[13]  Adel A. Ghoneim,et al.  Comparison of theoretical models of phase-change and sensible heat storage for air and water-based solar heating systems , 1989 .

[14]  S. Krishnan,et al.  Analysis of a phase change energy storage system for pulsed power dissipation , 2004, IEEE Transactions on Components and Packaging Technologies.

[15]  Marcel Lacroix,et al.  Contact melting of a phase change material inside a heated parallelepedic capsule , 2001 .

[16]  K. Srinivasan,et al.  A numerical model for heat sinks with phase change materials and thermal conductivity enhancers , 2006 .

[17]  G. Jilani,et al.  Numerical analysis of latent heat thermal energy storage system , 2007 .

[18]  Mehmet Esen,et al.  Geometric design of solar-aided latent heat store depending on various parameters and phase change materials , 1998 .

[19]  Salvatore Vasta,et al.  Thermal conductivity measurement of a PCM based storage system containing carbon fibers , 2005 .

[20]  M. Spiga,et al.  Discharge mode for encapsulated PCMs in storage tanks , 2003 .

[21]  K. Ismail,et al.  Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder , 2001 .

[22]  F. Tan,et al.  Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks , 2010 .

[23]  Ephraim M Sparrow,et al.  ANALYSIS OF MULTIDIMENSIONAL CONDUCTION PHASE CHANGE VIA THE ENTHALPY MODEL. , 1975 .

[24]  A. Elgafy,et al.  Effect of carbon nanofiber additives on thermal behavior of phase change materials , 2005 .

[25]  Wasim Saman,et al.  Numerical analysis of a PCM thermal storage system with varying wall temperature , 2005 .

[26]  Jay M. Khodadadi,et al.  Effects of buoyancy-driven convection on melting within spherical containers , 2001 .

[27]  Yogendra Joshi,et al.  Melting in a side heated tall enclosure by a uniformly dissipating heat source , 2001 .

[28]  G. Ziskind,et al.  Numerical investigation of a PCM-based heat sink with internal fins , 2005 .

[29]  S. C. Solanki,et al.  Latent heat thermal energy storage using cylindrical capsule: Numerical and experimental investigations , 2006 .

[30]  Bernard Franković,et al.  Analysis of the influence of operating conditions and geometric parameters on heat transfer in water-paraffin shell-and-tube latent thermal energy storage unit , 2006 .

[31]  F. Frusteri,et al.  Numerical approach to describe the phase change of an inorganic PCM containing carbon fibres , 2006 .

[32]  Yeung Woon-Shing Engineering analysis of heat transfer during melting in vertical rectangular enclosures , 1989 .

[33]  Subrata Sengupta,et al.  Gravity-assisted melting in a spherical enclosure: Effects of natural convection , 1990 .

[34]  G. Ziskind,et al.  Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments , 2010 .

[35]  Latif M. Jiji,et al.  Analysis of solidification and melting of PCM with energy generation , 2006 .

[36]  Yuwen Zhang,et al.  Heat Transfer Enhancement in Latent Heat Thermal Energy Storage System by Using an External Radial Finned Tube , 1996 .

[37]  B. W. Webb,et al.  ANALYSIS OF HEAT TRANSFER DURING MELTING OF A PURE METAL FROM AN ISOTHERMAL VERTICAL WALL , 1986 .

[38]  Kamal Abdel Radi Ismail,et al.  A numerical and experimental investigation of different containers and PCM options for cold storage modular units for domestic applications , 2009 .

[39]  Qinjun Kang,et al.  Thermal conductivity enhancement of carbon fiber composites , 2009 .

[40]  Maciej Jaworski,et al.  Thermal performance of heat spreader for electronics cooling with incorporated phase change material , 2012 .

[41]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[42]  Amir Faghri,et al.  A comprehensive numerical model for melting with natural convection , 2010 .

[43]  G. Domoto,et al.  Perturbation Solutions for Spherical Solidification of Saturated Liquids , 1973 .

[44]  Miroslaw Zukowski,et al.  Mathematical modeling and numerical simulation of a short term thermal energy storage system using phase change material for heating applications , 2007 .

[45]  Mehmet Esen,et al.  Development of a model compatible with solar assisted cylindrical energy storage tank and variation of stored energy with time for different phase change materials , 1996 .

[46]  Arun S. Mujumdar,et al.  Effect of orientation for phase change material (PCM)-based heat sinks for transient thermal management of electric components , 2007 .

[47]  Yildiz Bayazitoglu,et al.  Melting Within a Spherical Enclosure , 1982 .

[48]  A. Mujumdar,et al.  Finite-element analysis of cyclic heat transfer in a shell-and-tube latent heat energy storage exchanger , 1997 .

[49]  Ning Zheng,et al.  A Hybrid Thermal Energy Storage Device, Part 1: Design Methodology , 2004 .

[50]  G. Ziskind,et al.  Simulation of PCM Melting and Solidification in a Partitioned Storage Unit , 2003 .

[51]  P. Dutta,et al.  Heat transfer correlations for PCM-based heat sinks with plate fins , 2010 .

[52]  S. M. Hasnain Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques , 1998 .

[53]  B. Zivkovic,et al.  An analysis of isothermal phase change of phase change material within rectangular and cylindrical containers , 2001 .

[54]  M. Gharebaghi,et al.  Enhancement of Heat Transfer in Latent Heat Storage Modules with Internal Fins , 2007 .

[55]  D. Shinar BEN-GURION UNIVERSITY OF THE NEGEV , 2012 .

[56]  A. Kürklü,et al.  Mathematical modelling of the thermal performance of a phase-change material (PCM) store: Cooling cycle , 1996 .

[57]  Ashok J. Gadgil,et al.  Analysis of Two-Dimensional Melting in Rectangular Enclosures in Presence of Convection , 1984 .

[58]  A. Mujumdar,et al.  Flow and heat transfer in convection-dominated melting in a rectangular cavity heated from below , 1998 .

[59]  N. Shamsundar,et al.  Solar Heat Storage: Latent Heat Materials, Vol. I: Background and Scientific Principles , 1983 .

[60]  Liwu Fan,et al.  Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule , 2009 .

[61]  A. Elgafy,et al.  Numerical Study for Enhancing the Thermal Conductivity of Phase Change Material (PCM) Storage using High Thermal Conductivity Porous Matrix , 2005 .

[62]  Yue-Tzu Yang,et al.  Three-dimensional transient cooling simulations of a portable electronic device using PCM (phase change materials) in multi-fin heat sink , 2011 .

[63]  F. L. Tan,et al.  Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins , 2011 .

[64]  Christoph Beckermann,et al.  Natural convection solid/liquid phase change in porous media , 1988 .

[65]  James M. Hill,et al.  Freezing a saturated liquid inside a sphere , 1983 .

[66]  Anica Trp,et al.  An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit , 2005 .

[67]  Marcel Lacroix,et al.  Analysis of natural convection melting from a heated wall with vertically oriented fins , 1998 .

[68]  M. Cross,et al.  Accurate solutions of moving boundary problems using the enthalpy method , 1981 .

[69]  Wasim Saman,et al.  Analysis and modelling of a phase change storage system for air conditioning applications , 2001 .

[70]  Brian G. Thomas,et al.  Fixed grid techniques for phase change problems: A review , 1990 .

[71]  R. Velraj,et al.  Experimental analysis and numerical modelling of inward solidification on a finned vertical tube for a latent heat storage unit , 1997 .

[72]  A. Kürklü Thermal performance of a tapered store containing tubes of phase change material: Cooling cycle , 1997 .

[73]  Roland W. Lewis,et al.  Finite element solution of non‐linear heat conduction problems with special reference to phase change , 1974 .

[74]  M. Maeda,et al.  [Heat conduction]. , 1972, Kango kyoshitsu. [Nursing classroom].

[75]  P. Padmanabhan,et al.  Outward phase change in a cylindrical annulus with axial fins on the inner tube , 1986 .

[76]  Kai Sirén,et al.  Approximate analytical model for solidification in a finite PCM storage with internal fins , 2003 .

[77]  S. Krishnan,et al.  A novel hybrid heat sink using phase change materials for transient thermal management of electronics , 2005, IEEE Transactions on Components and Packaging Technologies.

[78]  M. Hamdan,et al.  Thermal energy storage using a phase change material , 1996 .

[79]  Dominique Gobin,et al.  Melting in Rectangular Enclosures: Experiments and Numerical Simulations , 1985 .

[80]  K. Ismail,et al.  ANALYSIS OF SHELL-TUBE PCM STORAGE SYSTEM , 1986 .

[81]  Wasim Saman,et al.  Thermal performance of PCM thermal storage unit for a roof integrated solar heating system , 2005 .

[82]  Long Jian-you,et al.  Numerical and experimental investigation for heat transfer in triplex concentric tube with phase change material for thermal energy storage , 2008 .

[83]  J. E. Simpson,et al.  Experimental and Numerical Investigation of the Bridgman Growth of a Transparent Material , 2002 .

[84]  Afif Hasan,et al.  Modeling of greenhouse with PCM energy storage , 2008 .

[85]  J. R Ockendon,et al.  Moving boundary problems in heat flow and diffusion : being the proceedings of the conference held at the University of Oxford, 25-27 March 1974 , 1976 .

[86]  J. Fukai,et al.  Effect of carbon-fiber brushes on conductive heat transfer in phase change materials , 2002 .

[87]  Milorad P. Dudukovic,et al.  Phase‐change heat regenerators: Modeling and experimental studies , 1996 .

[88]  Ephraim M Sparrow,et al.  Analysis of melting in the presence of natural convection in the melt region , 1977 .

[89]  Tarik Kousksou,et al.  Dynamic modelling of the storage of an encapsulated ice tank , 2005 .

[90]  Arun S. Mujumdar,et al.  A parametric study of phase change material (PCM)-based heat sinks , 2008 .

[91]  S. C. Solanki,et al.  Heat transfer characteristics of thermal energy storage system using PCM capsules: A review , 2008 .

[92]  S. C. Solanki,et al.  Experimental and Numerical analysis of melting of PCM inside a spherical capsule , 2006 .

[93]  J. Humphrey,et al.  Enhanced heat conduction in phase-change thermal energy storage devices , 1980 .

[94]  C. Balaji,et al.  Method to improve geometry for heat transfer enhancement in PCM composite heat sinks , 2005 .

[95]  D. Morrison,et al.  Effects of phase-change energy storage on the performance of air-based and liquid-based solar heating systems , 1977 .

[96]  A. W. Date A strong enthalpy formulation for the Stefan problem , 1991 .

[97]  Kamal Abdel Radi Ismail,et al.  Ice formation around isothermal radial finned tubes , 2000 .

[98]  Gennady Ziskind,et al.  Numerical and experimental study of melting in a spherical shell , 2007 .

[99]  Yue-Tzu Yang,et al.  Numerical simulation of three-dimensional transient cooling application on a portable electronic device using phase change material , 2012 .

[100]  Benjamin Pfaff,et al.  Free And Moving Boundary Problems , 2016 .

[101]  L. Pires,et al.  Transient behaviour of a latent-heat thermal-energy store: numerical and experimental studies , 2002 .

[102]  Amir Faghri,et al.  TEMPERATURE-TRANSFORMING MODEL FOR BINARY SOLID-LIQUID PHASE-CHANGE PROBLEMS PART II: NUMERICAL SIMULATION , 1994 .

[103]  Arun S. Mujumdar,et al.  Melting of a phase change material in concentric horizontal annuli of arbitrary cross-section , 2000 .

[104]  Philip C. Eames,et al.  Thermal regulation of building-integrated photovoltaics using phase change materials , 2004 .

[105]  A. Elgafy,et al.  Carbon Foam Matrices Saturated with PCM for Thermal Protection Purposes , 2006 .

[106]  Mohammed A. Hamdan,et al.  Experimental and numerical investigation of solid particles thermal energy storage unit , 2006 .

[107]  Jean-Pierre Bédécarrats Etude des transformations des matériaux à changements de phases encapsulés destinés au stockage du froid , 1993 .

[108]  Amir Faghri,et al.  TEMPERATURE-TRANSFORMING MODEL FOR BINARY SOLID-LIQUID PHASE-CHANGE PROBLEMS PART I: MATHEMATICAL MODELING AND NUMERICAL METHODOLOGY , 1994 .

[109]  M. Lacroix Numerical simulation of a shell-and-tube latent heat thermal energy storage unit , 1993 .

[110]  Minwu Yao,et al.  AN ALTERNATIVE FORMULATION OF THE APPARENT HEAT CAPACITY METHOD FOR PHASE-CHANGE PROBLEMS , 1993 .

[111]  Arun S. Mujumdar,et al.  Transient cooling of electronics using phase change material (PCM)-based heat sinks , 2008 .