Experimental determination of transverse dispersivity in a helix and a cochlea

In porous media, transverse dispersion plays a decisive role in the dilution of conservative solutes, the decay of concentration fluctuations, and the mixing of reactive solutes. One possible approach for measuring the transverse dispersivity of homogeneous isotropic porous media is based on the principle of Taylor‐Aris dispersion, where the longitudinal macrodispersion coefficient is inversely proportional to the pore‐scale transverse dispersion coefficient. Taylor‐Aris dispersion requires a shear flow situation. To achieve the latter in porous media, we use a helix, as previously proposed, and also a cochlea, which is spiral‐shaped cavity resembling the interior a nautilus shell. We obtain experimental breakthrough curves from conservative tracer experiments and compare them to results of numerical simulation. By fitting the model we obtain the values of transverse dispersivity in various tracer tests. In our experiments we investigate porous media with relatively uniform particle distributions. Estimates of the transverse dispersivity are obtained for each experiment, and the relative advantages of each device are discussed. The two devices yield similar results. The estimated ratio of transverse dispersivity to longitudinal dispersivity agrees with the higher ratios reported in the literature.

[1]  G. Taylor Dispersion of soluble matter in solvent flowing slowly through a tube , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  R. Aris On the dispersion of a solute in a fluid flowing through a tube , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  R. Banks,et al.  A solution of the differential equation of longitudinal dispersion in porous media , 1961 .

[4]  A. Scheidegger General Theory of Dispersion in Porous Media , 1961 .

[5]  F. Grane,et al.  Measurements of Transverse Dispersion in Granular Media. , 1961 .

[6]  R. J. Blackwell,et al.  Laboratory Studies of Microscopic Dispersion Phenomena , 1962 .

[7]  Donald R. F. Harleman,et al.  Longitudinal and lateral dispersion in an isotropic porous medium , 1963, Journal of Fluid Mechanics.

[8]  D. U. Rosenberg,et al.  A Mathematical and Experimental Examination of Transverse Dispersion Coefficients , 1968 .

[9]  T. A. Prickett,et al.  A "random-walk" solute transport model for selected groundwater quality evaluations , 1981 .

[10]  C. Axness,et al.  Three‐dimensional stochastic analysis of macrodispersion in aquifers , 1983 .

[11]  S. Huberson,et al.  A linear graphical method for determining hydrodispersive characteristics in tracer experiments with instantaneous injection , 1987 .

[12]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[13]  Gary A. Robbins,et al.  Methods for determining transverse dispersion coefficients of porous media in laboratory column experiments , 1989 .

[14]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[15]  T. Kulp,et al.  Investigation of Dispersion in Porous Media Using Fiber‐Optic Technology , 1991 .

[16]  J. H. Dane,et al.  Behavior of dense aqueous phase leachate plumes in homogeneous porous media , 1992 .

[17]  William H. Press,et al.  Numerical Recipes in Fortran 77 , 1992 .

[18]  S. Zou,et al.  Estimation of Dispersion Parameters for Two‐Dimensional Plumes , 1993 .

[19]  S. Zou,et al.  Two‐Dimensional Dispersivity Estimation Using Tracer Experiment Data , 1994 .

[20]  F. Brockman,et al.  Transport and biodegradation of quinoline in horizontally stratified porous media , 1994 .

[21]  Vivek Kapoor,et al.  Transport in three-dimensionally heterogeneous aquifers: 1. Dynamics of concentration fluctuations , 1994 .

[22]  P. Righetti,et al.  Use of Taylor-Aris Dispersion for Measurement of a Solute Diffusion Coefficient in Thin Capillaries , 1994, Science.

[23]  Peter K. Kitanidis,et al.  The concept of the Dilution Index , 1994 .

[24]  M. Nishigaki,et al.  Laboratory Determination of Transverse and Longitudinal Dispersion coefficients in Porous Media , 1996 .

[25]  L. Gelhar,et al.  Bimolecular second‐order reactions in spatially varying flows: Segregation induced scale‐dependent transformation rates , 1997 .

[26]  Peter K. Kitanidis,et al.  Concentration fluctuations and dilution in aquifers , 1998 .

[27]  A. Valocchi,et al.  Transport and biodegradation of solutes in stratified aquifers under enhanced in situ bioremediation conditions , 1998 .

[28]  A two-well method to evaluate transverse dispersivity for tracer tests in a radially convergent flow field , 1999 .

[29]  A. Valocchi,et al.  An experimental investigation of NAPL pool dissolution enhancement by flushing , 1999 .

[30]  Rainer Helmig,et al.  Numerical simulation of biodegradation controlled by transverse mixing , 1999 .

[31]  Sabine Attinger,et al.  Temporal behavior of a solute cloud in a heterogeneous porous medium: 1. Point‐like injection , 2000 .

[32]  P. Kitanidis,et al.  Characterization of mixing and dilution in heterogeneous aquifers by means of local temporal moments , 2000 .

[33]  G. Dagan,et al.  Concentration fluctuations in aquifer transport: a rigorous first-order solution and applications , 2000 .

[34]  S. Jellali Pollution d'aquiferes poreux par les solvants chlores : mecanismes de transport avec echanges entre phases : experimentations sur site controle avec le trichloroethylene , 2000 .

[35]  Peter K. Kitanidis,et al.  Theoretical basis for the measurement of local transverse dispersion in isotropic porous media , 2001 .

[36]  P. Polić,et al.  Optimization and application of the gas-diffusion flow injection method for the determination of chloride , 2001 .

[37]  Peter Grathwohl,et al.  Time scales of organic contaminant dissolution from complex source zones: coal tar pools vs. blobs. , 2002, Journal of contaminant hydrology.

[38]  I. Klenk,et al.  Transverse vertical dispersion in groundwater and the capillary fringe. , 2002, Journal of contaminant hydrology.

[39]  O. Cirpka Choice of dispersion coefficients in reactive transport calculations on smoothed fields. , 2002, Journal of contaminant hydrology.

[40]  David N Lerner,et al.  Dissolved oxygen imaging in a porous medium to investigate biodegradation in a plume with limited electron acceptor supply. , 2003, Environmental science & technology.

[41]  Peter K. Kitanidis,et al.  Fluid residence times within a recirculation zone created by an extraction -injection well pair , 2004 .

[42]  Henning Prommer,et al.  Effects of hydrodynamic dispersion on plume lengths for instantaneous bimolecular reactions , 2004 .

[43]  Peter Dietrich,et al.  Finiteness of steady state plumes , 2005 .

[44]  Peter K. Kitanidis,et al.  Modeling microbial reactions at the plume fringe subject to transverse mixing in porous media: When can the rates of microbial reaction be assumed to be instantaneous? , 2005 .

[45]  Peter Grathwohl,et al.  Determination of Transverse Dispersion Coefficients from Reactive Plume Lengths , 2006, Ground water.