Adaptive Hamiltonian and Riemann manifold Monte Carlo samplers
暂无分享,去创建一个
[1] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[2] R. Tweedie,et al. Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .
[3] Radford M. Neal,et al. High Dimensional Classification with Bayesian Neural Networks and Dirichlet Diffusion Trees , 2006, Feature Extraction.
[4] Nando de Freitas,et al. An Introduction to MCMC for Machine Learning , 2004, Machine Learning.
[5] J. M. Sanz-Serna,et al. Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.
[6] J. Rosenthal,et al. Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.
[7] G. Roberts,et al. Langevin Diffusions and Metropolis-Hastings Algorithms , 2002 .
[8] Katherine A. Heller,et al. Bayesian Exponential Family PCA , 2008, NIPS.
[9] Nando de Freitas,et al. Adaptive MCMC with Bayesian Optimization , 2012, AISTATS.
[10] H. Ishwaran. Applications of Hybrid Monte Carlo to Bayesian Generalized Linear Models: Quasicomplete Separation and Neural Networks , 1999 .
[11] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[12] J. Rosenthal,et al. Scaling limits for the transient phase of local Metropolis–Hastings algorithms , 2005 .
[13] Steve R. Gunn,et al. Result Analysis of the NIPS 2003 Feature Selection Challenge , 2004, NIPS.
[14] S. Duane,et al. Hybrid Monte Carlo , 1987 .
[15] Jasper Snoek,et al. Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.
[16] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[17] Nando de Freitas,et al. Portfolio Allocation for Bayesian Optimization , 2010, UAI.
[18] J. Mockus,et al. The Bayesian approach to global optimization , 1989 .
[19] Nando de Freitas,et al. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning , 2010, ArXiv.
[20] Geoffrey E. Hinton,et al. Modeling pixel means and covariances using factorized third-order boltzmann machines , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[21] Nando de Freitas,et al. Self-Avoiding Random Dynamics on Integer Complex Systems , 2011, TOMC.
[22] Lingyu Chen,et al. Exploring Hybrid Monte Carlo in Bayesian Computation , 2000 .
[23] C. Robert,et al. Controlled MCMC for Optimal Sampling , 2001 .
[24] Matti Vihola,et al. Grapham: Graphical models with adaptive random walk Metropolis algorithms , 2008, Comput. Stat. Data Anal..
[25] N. Shephard,et al. Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .
[26] G. Fort,et al. Limit theorems for some adaptive MCMC algorithms with subgeometric kernels , 2008, 0807.2952.
[27] Andreas Krause,et al. Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.
[28] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[29] A. Gelman,et al. Adaptively Scaling the Metropolis Algorithm Using Expected Squared Jumped Distance , 2007 .
[30] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[31] Yaakov Engel,et al. Algorithms and representations for reinforcement learning (עם תקציר בעברית, תכן ושער נוסף: אלגוריתמים וייצוגים ללמידה מחיזוקים.; אלגוריתמים וייצוגים ללמידה מחיזוקים.) , 2005 .