Models and data analysis tools for the Solar Orbiter mission

Context.The Solar Orbiter spacecraft will be equipped with a wide range of remote-sensing (RS) and in situ (IS) instruments to record novel and unprecedented measurements of the solar atmosphere and the inner heliosphere. To take full advantage of these new datasets, tools and techniques must be developed to ease multi-instrument and multi-spacecraft studies. In particular the currently inaccessible low solar corona below two solar radii can only be observed remotely. Furthermore techniques must be used to retrieve coronal plasma properties in time and in three dimensional (3D) space. Solar Orbiter will run complex observation campaigns that provide interesting opportunities to maximise the likelihood of linking IS data to their source region near the Sun. Several RS instruments can be directed to specific targets situated on the solar disk just days before data acquisition. To compare IS and RS, data we must improve our understanding of how heliospheric probes magnetically connect to the solar disk.Aims.The aim of the present paper is to briefly review how the current modelling of the Sun and its atmosphere can support Solar Orbiter science. We describe the results of a community-led effort by European Space Agency’s Modelling and Data Analysis Working Group (MADAWG) to develop different models, tools, and techniques deemed necessary to test different theories for the physical processes that may occur in the solar plasma. The focus here is on the large scales and little is described with regards to kinetic processes. To exploit future IS and RS data fully, many techniques have been adapted to model the evolving 3D solar magneto-plasma from the solar interior to the solar wind. A particular focus in the paper is placed on techniques that can estimate how Solar Orbiter will connect magnetically through the complex coronal magnetic fields to various photospheric and coronal features in support of spacecraft operations and future scientific studies.Methods.Recent missions such as STEREO, provided great opportunities for RS, IS, and multi-spacecraft studies. We summarise the achievements and highlight the challenges faced during these investigations, many of which motivated the Solar Orbiter mission. We present the new tools and techniques developed by the MADAWG to support the science operations and the analysis of the data from the many instruments on Solar Orbiter.Results.This article reviews current modelling and tool developments that ease the comparison of model results with RS and IS data made available by current and upcoming missions. It also describes the modelling strategy to support the science operations and subsequent exploitation of Solar Orbiter data in order to maximise the scientific output of the mission.Conclusions.The on-going community effort presented in this paper has provided new models and tools necessary to support mission operations as well as the science exploitation of the Solar Orbiter data. The tools and techniques will no doubt evolve significantly as we refine our procedure and methodology during the first year of operations of this highly promising mission.

Philippe Louarn | Baptiste Cecconi | Silvano Fineschi | Alessandro Bemporad | Ester Antonucci | M. Bouchemit | Luca Teriaca | Angelos Vourlidas | B. Nicula | M. Romoli | Vincenzo Andretta | Daniele Spadaro | Vincent Génot | M. Indurain | Antoine Strugarek | Paolo Pagano | E. Buchlin | M. Haberreiter | L. Etesi | N. Vilmer | Miho Janvier | Andrzej Fludra | David Berghmans | D. Müller | J. Hirzberger | O. C. St. Cyr | Holly Gilbert | Andrew P. Walsh | Teresa Nieves-Chinchilla | A. Fedorov | Anastasios Anastasiadis | J. Linker | C. Watson | Cis Verbeeck | I. Cernuda | Thomas Wiegelmann | E. Budnik | Arnaud Masson | A. Lagg | J. C. del Toro Iniesta | Milan Maksimovic | Raul Gomez-Herrero | C. Sasso | Allan Sacha Brun | M. Lavarra | David Pérez-Suárez | Joseph M. Davila | D. Orozco Suárez | K. Kozarev | Gottfried Mann | Christopher J. Owen | P. Osuna | I. Zouganelis | Roberto Susino | T. Straus | A. P. Rouillard | R. F. Pinto | A. De Groof | W. T. Thompson | S. Dolei | Kévin Dalmasse | M. Alexandre | N. E. Raouafi | C. N. Arge | N. Poirier | T. Amari | A. Aran | Frédéric Auchère | L. R. Bellot Rubio | X. Bonnin | S. Caminade | J. Carlyle | F. Espinosa Lara | M. K. Georgoulis | A. Giunta | S. Guest | D. M. Hassler | C. J. Henney | R. A. Howard | Timothy S. Horbury | S. I. Jones | E. Kraaikamp | A. Kouloumvakos | S. Krucker | B. Lavraud | Shane A. Maloney | H. Önel | A. Papaioannou | Javier Rodriguez-Pacheco | S. Parenti | E. Pariat | Hardi Peter | S. Plunkett | J. Pomoell | J. M. Raines | T. L. Riethmüller | N. Rich | L. Rodriguez | L. Sanchez | S. K. Solanki | R. Ventura | A. Warmuth | D. Williams | Y. Wu | Andrei Zhukov | S. Guest | X. Bonnin | S. Fineschi | N. Raouafi | S. Solanki | N. Poirier | D. Pérez-Suárez | D. Hassler | T. Horbury | P. Louarn | C. Owen | L. B. Rubio | J. C. D. T. Iniesta | S. Krucker | A. Warmuth | A. Lagg | J. Linker | C. Arge | A. Vourlidas | N. Vilmer | B. Lavraud | A. Rouillard | R. Pinto | F. Auchère | M. Janvier | M. Maksimović | K. Dalmasse | J. Raines | V. Génot | M. Bouchemit | B. Cecconi | E. Budnik | R. Gómez-Herrero | A. Papaioannou | T. Nieves‐Chinchilla | M. Georgoulis | T. Riethmüller | A. Anastasiadis | B. Nicula | P. Pagano | T. Wiegelmann | T. Amari | E. Pariat | A. Fedorov | D. Spadaro | M. Romoli | J. Davila | L. Etesi | H. Önel | J. Rodríguez-Pacheco | D. Müller | O. C. Cyr | H. Gilbert | D. Berghmans | É. Buchlin | M. Haberreiter | E. Kraaikamp | S. Parenti | H. Peter | L. Rodriguez | L. Teriaca | C. Verbeeck | A. Zhukov | J. Hirzberger | I. Zouganelis | S. Caminade | A. Fludra | A. Giunta | W. Thompson | D. Williams | R. Howard | A. Groof | K. Kozarev | A. Brun | E. Antonucci | S. Jones | C. Henney | R. Susino | V. Andretta | J. Pomoell | S. Plunkett | N. Rich | A. Bemporad | A. Strugarek | M. Lavarra | S. Maloney | À. Aran | P. Osuna | A. Walsh | C. Watson | L. Sánchez | S. Dolei | F. Lara | A. Masson | D. Suárez | C. Sasso | T. Straus | I. Cernuda | M. Indurain | J. Carlyle | A. Kouloumvakos | R. Ventura | A. Kouloumvakos | G. Mann | M. Alexandre | Y. Wu | D. Súarez | T. Nieves-chinchilla

[1]  A. M. Hellín,et al.  The Energetic Particle Detector , 2020 .

[2]  C. Russell,et al.  The Solar Orbiter magnetometer , 2020, Astronomy & Astrophysics.

[3]  P. Astier,et al.  The Solar Orbiter Radio and Plasma Waves (RPW) instrument , 2020, Astronomy & Astrophysics.

[4]  X. Bonnin,et al.  Coordination of the in situ payload of Solar Orbiter , 2020, Astronomy & Astrophysics.

[5]  S. Fineschi,et al.  Coordination within the remote sensing payload on the Solar Orbiter mission , 2020, Astronomy & Astrophysics.

[6]  C. Mariano,et al.  The Solar Orbiter Heliospheric Imager (SoloHI) , 2020, Astronomy & Astrophysics.

[7]  D. Plettemeier,et al.  The Solar Orbiter Science Activity Plan , 2020, Astronomy & Astrophysics.

[8]  A. Spencer,et al.  The Solar Orbiter Solar Wind Analyser (SWA) suite , 2020, Astronomy & Astrophysics.

[9]  A. Spencer,et al.  The Solar Orbiter EUI instrument: The Extreme Ultraviolet Imager , 2020, Astronomy & Astrophysics.

[10]  Giampiero Naletto,et al.  Metis: the Solar Orbiter visible light and ultraviolet coronal imager , 2019, Astronomy & Astrophysics.

[11]  S. Guest,et al.  The Solar Orbiter SPICE instrument , 2019, 1909.01183.

[12]  J. C. del Toro Iniesta,et al.  The Polarimetric and Helioseismic Imager on Solar Orbiter , 2019, Astronomy & Astrophysics.

[13]  D. S. Bloomfield,et al.  The Spectrometer/Telescope for Imaging X-rays (STIX) , 2012, Astronomy & Astrophysics.

[14]  F. Frassetto,et al.  Effect of the non-uniform solar chromospheric Lyα radiation on determining the coronal H I outflow velocity , 2019, Astronomy & Astrophysics.

[15]  F. Frassetto,et al.  Comparing extrapolations of the coronal magnetic field structure at 2.5R⊙with multi-viewpoint coronagraphic observations , 2019, Astronomy & Astrophysics.

[16]  A. Vourlidas,et al.  Connecting the Properties of Coronal Shock Waves with Those of Solar Energetic Particles , 2019, The Astrophysical Journal.

[17]  D. Nychka,et al.  Data-optimized Coronal Field Model. I. Proof of Concept , 2019, The Astrophysical Journal.

[18]  E. Thrane,et al.  The Mass Distribution of Galactic Double Neutron Stars , 2019, The Astrophysical Journal.

[19]  W. Matthaeus,et al.  The Steady Global Corona and Solar Wind: A Three-dimensional MHD Simulation with Turbulence Transport and Heating , 2018, The Astrophysical Journal.

[20]  T. Wiegelmann,et al.  On the Extrapolation of Magnetohydrostatic Equilibria on the Sun , 2018, The Astrophysical Journal.

[21]  Helen E. Mason,et al.  Solar UV and X-ray spectral diagnostics , 2018, Living Reviews in Solar Physics.

[22]  J. C. del Toro Iniesta,et al.  SOPHISM: An End-to-end Software Instrument Simulator , 2018, The Astrophysical Journal Supplement Series.

[23]  P. Chopin,et al.  Global Non-Potential Magnetic Models of the Solar Corona During the March 2015 Eclipse , 2018, Space science reviews.

[24]  A. Vourlidas,et al.  Elliptic-cylindrical Analytical Flux Rope Model for Magnetic Clouds , 2018, The Astrophysical Journal.

[25]  Jing-xiu Wang,et al.  Predictability of the Solar Cycle Over One Cycle , 2018, The Astrophysical Journal.

[26]  P. Charbonneau,et al.  On the Sensitivity of Magnetic Cycles in Global Simulations of Solar-like Stars , 2018, The Astrophysical Journal.

[27]  A. Vourlidas,et al.  Streamer-blowout Coronal Mass Ejections: Their Properties and Relation to the Coronal Magnetic Field Structure , 2018, The Astrophysical Journal.

[28]  S. Poedts,et al.  EUHFORIA: European heliospheric forecasting information asset , 2018 .

[29]  P. Hess,et al.  Gradual Streamer Expansions and the Relationship between Blobs and Inflows , 2018, The Astrophysical Journal.

[30]  Sung-Hong Park,et al.  Testing and Improving a Set of Morphological Predictors of Flaring Activity , 2018, Solar Physics.

[31]  A. Rouillard,et al.  Modelling of proton acceleration in application to a ground level enhancement , 2018, Astronomy & Astrophysics.

[32]  M. Velli,et al.  Solar Physics From Unconventional Viewpoints , 2018, Front. Astron. Space Sci..

[33]  Komei Sugiura,et al.  Deep Flare Net (DeFN) Model for Solar Flare Prediction , 2018, 1805.03421.

[34]  E. Landi,et al.  The First Empirical Determination of the Fe10+ and Fe13+ Freeze-in Distances in the Solar Corona , 2018, The Astrophysical Journal.

[35]  E. Cliver,et al.  A Short-term ESPERTA-based Forecast Tool for Moderate-to-extreme Solar Proton Events , 2018 .

[36]  M. Georgoulis The Ambivalent Role of Field-Aligned Electric Currents in the Solar Atmosphere , 2018 .

[37]  Jinfu Liu,et al.  Deep Learning Based Solar Flare Forecasting Model. I. Results for Line-of-sight Magnetograms , 2018 .

[38]  M. Wheatland,et al.  Electric Currents in Geospace and Beyond. , 2018 .

[39]  P. Pagano,et al.  A new technique for observationally derived boundary conditions for space weather , 2018, 1802.07516.

[40]  Graham Barnes,et al.  The NWRA Classification Infrastructure: Description and Extension to the Discriminant Analysis Flare Forecasting System (DAFFS) , 2018, 1802.06864.

[41]  F. Alauzet,et al.  Magnetic cage and rope as the key for solar eruptions , 2018, Nature.

[42]  A. Rouillard,et al.  Production of Sunspots and Their Effects on the Corona and Solar Wind: Insights from a New 3D Flux-Transport Dynamo Model , 2018, Front. Astron. Space Sci..

[43]  A. Vourlidas,et al.  Understanding the Internal Magnetic Field Configurations of ICMEs Using More than 20 Years of Wind Observations , 2018 .

[44]  F. Frassetto,et al.  Mapping the solar wind HI outflow velocity in the inner heliosphere by coronagraphic ultraviolet and visible-light observations , 2018 .

[45]  J. Linker,et al.  Regularized Biot–Savart Laws for Modeling Magnetic Flux Ropes , 2017, 1712.06708.

[46]  N. Crosby,et al.  Solar Particle Radiation Storms Forecasting and Analysis: The HESPERIA HORIZON 2020 Project and Beyond , 2018 .

[47]  Marlon Núñez,et al.  HESPERIA Forecasting Tools: Real-Time and Post-Event , 2018 .

[48]  M. Gangloff,et al.  Science data visualization in planetary and heliospheric contexts with 3DView , 2018 .

[49]  B. V. Semenov,et al.  A look towards the future in the handling of space science mission geometry , 2018 .

[50]  S. Yardley,et al.  Simulating the Coronal Evolution of AR 11437 Using SDO/HMI Magnetograms , 2017, 1712.00396.

[51]  B. Lavraud,et al.  The Temporal and Spatial Scales of Density Structures Released in the Slow Solar Wind During Solar Activity Maximum , 2017, 1711.02486.

[52]  P. Charbonneau,et al.  The Effect of “Rogue” Active Regions on the Solar Cycle , 2017, 1712.02185.

[53]  K. Kozarev,et al.  The Coronal Analysis of SHocks and Waves (CASHeW) framework , 2017, 1710.05302.

[54]  A. Brun,et al.  Global Solar Magnetic Field Organization in the Outer Corona: Influence on the Solar Wind Speed and Mass Flux Over the Cycle , 2017, 1710.02908.

[55]  O. Talagrand,et al.  Variational Estimation of the Large-scale Time-dependent Meridional Circulation in the Sun: Proofs of Concept with a Solar Mean Field Dynamo Model , 2017, 1710.02114.

[56]  Pete Riley,et al.  On the Link between the Release of Solar Energetic Particles Measured at Widespread Heliolongitudes and the Properties of the Associated Coronal Shocks , 2017 .

[57]  A. Brun,et al.  Magnetism, dynamo action and the solar-stellar connection , 2017, Living Reviews in Solar Physics.

[58]  Manolis K. Georgoulis,et al.  Predicting Flares and Solar Energetic Particle Events: The FORSPEF Tool , 2017 .

[59]  A. Bemporad Exploring the Inner Acceleration Region of Solar Wind: A Study Based on Coronagraphic UV and Visible Light Data , 2017 .

[60]  Manolis K. Georgoulis,et al.  Non-neutralized Electric Currents in Solar Active Regions and Flare Productivity , 2017, 1708.07087.

[61]  N. Lugaz,et al.  The Physical Processes of CME/ICME Evolution , 2017 .

[62]  Philippe Beaudoin,et al.  Reconciling solar and stellar magnetic cycles with nonlinear dynamo simulations , 2017, Science.

[63]  C. Russell Space Weather in the Heliosphere , 2017, Proceedings of the International Astronomical Union.

[64]  R. Ventura,et al.  Investigating the behaviour of neutral hydrogen Lyα spectral line width in polar coronal holes at solar minimum , 2017 .

[65]  M. Miesch,et al.  Solar Cycle Variability Induced by Tilt Angle Scatter in a Babcock–Leighton Solar Dynamo Model , 2017, 1706.08933.

[66]  M. Lockwood,et al.  Coronal mass ejections are not coherent magnetohydrodynamic structures , 2017, Scientific Reports.

[67]  P. Noterdaeme,et al.  The high A_V Quasar Survey: A z=2.027 metal-rich damped Lyman-alpha absorber towards a red quasar at z=3.21 , 2017, 1706.07016.

[68]  Haimin Wang,et al.  Predicting Solar Flares Using SDO/HMI Vector Magnetic Data Products and the Random Forest Algorithm , 2017, 1706.02422.

[69]  Observational signatures of a kink-unstable coronal flux rope using Hinode/EIS , 2017, 1705.05114.

[70]  S. Tomczyk,et al.  Magnetic Nulls and Super-radial Expansion in the Solar Corona , 2017, The astrophysical journal. Letters.

[71]  A. Rouillard,et al.  The magnetic connectivity of coronal shocks from behind-the-limb flares to the visible solar surface during γ-ray events , 2017, 1703.07563.

[72]  B. Inhester,et al.  Nonlinear Force-free Coronal Magnetic Stereoscopy , 2017, 1709.04177.

[73]  N. André,et al.  A propagation tool to connect remote-sensing observations with in-situ measurements of heliospheric structures , 2017, 1702.00399.

[74]  T. Nieves‐Chinchilla,et al.  A STEREO Survey of Magnetic Cloud Coronal Mass Ejections Observed at Earth in 2008–2012 , 2017, 1701.01682.

[75]  A. Rouillard,et al.  A Multiple Flux-tube Solar Wind Model , 2016, 1611.08744.

[76]  A. Isavnin,et al.  FRiED: A NOVEL THREE-DIMENSIONAL MODEL OF CORONAL MASS EJECTIONS , 2016, 1703.01659.

[77]  B. Lavraud,et al.  Observational Evidence for the Associated Formation of Blobs and Raining Inflows in the Solar Corona , 2016, 1612.05487.

[78]  M. Lockwood,et al.  The Solar Probe Plus Mission: Humanity’s First Visit to Our Star , 2016 .

[79]  S. Solanki,et al.  A New MHD-assisted Stokes Inversion Technique , 2016, 1611.05175.

[80]  J. Byers,et al.  Sparse Bayesian Inference and the Temperature Structure of the Solar Corona , 2016, 1610.05972.

[81]  P. Pagano,et al.  Origin and Ion Charge State Evolution of Solar Wind Transients during 4 – 7 August 2011 , 2016, 1610.05048.

[82]  D. S. Bloomfield,et al.  A COMPARISON OF FLARE FORECASTING METHODS. I. RESULTS FROM THE “ALL-CLEAR” WORKSHOP , 2016, 1608.06319.

[83]  R. Casini,et al.  Scientific objectives and capabilities of the Coronal Solar Magnetism Observatory , 2016 .

[84]  P. Fernique,et al.  VESPA: a community-driven Virtual Observatory in Planetary Science , 2016, 1705.09727.

[85]  D. Mackay,et al.  IMPACT OF AN L5 MAGNETOGRAPH ON NONPOTENTIAL SOLAR GLOBAL MAGNETIC FIELD MODELING , 2016 .

[86]  D. Nychka,et al.  ROAM: A Radial-Basis-Function Optimization Approximation Method for Diagnosing the Three-Dimensional Coronal Magnetic Field , 2016, Front. Astron. Space Sci..

[87]  S. Fineschi,et al.  Diagnostics of Coronal Magnetic Fields through the Hanle Effect in UV and IR Lines , 2016, Front. Astron. Space Sci..

[88]  Charles J. Farrugia,et al.  A CIRCULAR-CYLINDRICAL FLUX-ROPE ANALYTICAL MODEL FOR MAGNETIC CLOUDS , 2016 .

[89]  A. Warmuth,et al.  DERIVING THE PROPERTIES OF CORONAL PRESSURE FRONTS IN 3D: APPLICATION TO THE 2012 MAY 17 GROUND LEVEL ENHANCEMENT , 2016, 1605.05208.

[90]  S. Kahler,et al.  Characterizing Solar Energetic Particle Event Profiles with Two-Parameter Fits , 2016 .

[91]  J. Lyon,et al.  Time‐dependent magnetohydrodynamic simulations of the inner heliosphere , 2016 .

[92]  S. White,et al.  FORWARD: A Toolset for Multiwavelength Coronal Magnetometry , 2016, Front. Astron. Space Sci..

[93]  S. Tomczyk,et al.  DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS , 2015, 1502.07200.

[94]  R. Frazin,et al.  Time-dependent tomographic reconstruction of the solar corona , 2014, Astron. Comput..

[95]  M. Dikpati,et al.  Recent Advances on Solar Global Magnetism and Variability , 2015 .

[96]  Alexandra Tritschler,et al.  Cross-Calibrating Sunspot Magnetic Field Strength Measurements from the McMath–Pierce Solar Telescope and the Dunn Solar Telescope , 2015 .

[97]  G. Petrie Solar Magnetism in the Polar Regions , 2015 .

[98]  D. Odstrcil,et al.  Ensemble Modeling of the 23 July 2012 Coronal Mass Ejection , 2015 .

[99]  B. Pontieu,et al.  NUMERICAL SIMULATIONS OF CORONAL HEATING THROUGH FOOTPOINT BRAIDING , 2015, 1508.07234.

[100]  P. Pagano,et al.  Future capabilities of CME polarimetric 3D reconstructions with the METIS instrument: A numerical test , 2015, 1508.05276.

[101]  Coronal magnetic field modeling using stereoscopy constraints , 2015 .

[102]  R. Ventura,et al.  Visible light and ultraviolet observations of coronal structures: physical properties of an equatorial streamer and modelling of the F corona , 2015 .

[103]  C. Schrijver,et al.  THERMAL DIAGNOSTICS WITH THE ATMOSPHERIC IMAGING ASSEMBLY ON BOARD THE SOLAR DYNAMICS OBSERVATORY: A VALIDATED METHOD FOR DIFFERENTIAL EMISSION MEASURE INVERSIONS , 2015, 1504.03258.

[104]  M. Schüssler,et al.  The crucial role of surface magnetic fields for the solar dynamo , 2015, Science.

[105]  Stephen M. White,et al.  Forecasting solar extreme and far ultraviolet irradiance , 2015 .

[106]  R. Frazin,et al.  A STEADY-STATE PICTURE OF SOLAR WIND ACCELERATION AND CHARGE STATE COMPOSITION DERIVED FROM A GLOBAL WAVE-DRIVEN MHD MODEL , 2014, 1412.8288.

[107]  C. Arge,et al.  Data Assimilation in the ADAPT Photospheric Flux Transport Model , 2014, 1410.6185.

[108]  Jens Rodmann,et al.  The Wide-Field Imager for Solar Probe Plus (WISPR) , 2014 .

[109]  X. Bai,et al.  Improved magnetogram calibration of Solar Magnetic Field Telescope and its comparison with the Helioseismic and Magnetic Imager , 2014 .

[110]  O. Olmedo,et al.  NEW INSIGHTS INTO THE PHYSICAL NATURE OF CORONAL MASS EJECTIONS AND ASSOCIATED SHOCK WAVES WITHIN THE FRAMEWORK OF THE THREE-DIMENSIONAL STRUCTURE , 2014 .

[111]  SINGLE-POINT INVERSION OF THE CORONAL MAGNETIC FIELD , 2014 .

[112]  S. Poedts,et al.  Simulating AIA observations of a flux rope ejection , 2014, 1407.8397.

[113]  S. Lepri,et al.  CHARGE STATE EVOLUTION IN THE SOLAR WIND. III. MODEL COMPARISON WITH OBSERVATIONS , 2014 .

[114]  Jesper Schou,et al.  Helioseismology with Solar Orbiter , 2014, 1406.5435.

[115]  E. Priest,et al.  The solar cycle variation of topological structures in the global solar corona , 2014, 1406.5333.

[116]  A. B. Galvin,et al.  CONNECTING SPEEDS, DIRECTIONS AND ARRIVAL TIMES OF 22 CORONAL MASS EJECTIONS FROM THE SUN TO 1 AU , 2014, 1404.3579.

[117]  S. Wu,et al.  NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF A CORONAL MAGNETIC FLUX ROPE SUPPORTING A LARGE-SCALE SOLAR FILAMENT FROM A PHOTOSPHERIC VECTOR MAGNETOGRAM , 2014, 1403.7807.

[118]  M. Ben‐Nun,et al.  A Multi-Observatory Inter-Comparison of Line-of-Sight Synoptic Solar Magnetograms , 2014 .

[119]  M. Cheung,et al.  NUMERICAL SIMULATIONS OF ACTIVE REGION SCALE FLUX EMERGENCE: FROM SPOT FORMATION TO DECAY , 2014, 1402.4703.

[120]  D. Mackay,et al.  Simulating the formation of a sigmoidal flux rope in AR10977 from SOHO/MDI magnetograms , 2014 .

[121]  M. Wheatland,et al.  USING CORONAL LOOPS TO RECONSTRUCT THE MAGNETIC FIELD OF AN ACTIVE REGION BEFORE AND AFTER A MAJOR FLARE , 2013, 1312.5389.

[122]  D. Seaton,et al.  OBSERVATIONS OF A HYBRID DOUBLE-STREAMER/PSEUDOSTREAMER IN THE SOLAR CORONA , 2013, 1312.3153.

[123]  A. Vourlidas,et al.  Three-Dimensional Evolution of Flux-Rope CMEs and Its Relation to the Local Orientation of the Heliospheric Current Sheet , 2013, 1312.0458.

[124]  T. Gombosi,et al.  ALFVÉN WAVE SOLAR MODEL (AWSoM): CORONAL HEATING , 2013, 1311.4093.

[125]  J. C. del Toro Iniesta,et al.  The Solar Orbiter mission , 2020, Optics & Photonics - Optical Engineering + Applications.

[126]  J. Linker,et al.  A METHOD FOR EMBEDDING CIRCULAR FORCE-FREE FLUX ROPES IN POTENTIAL MAGNETIC FIELDS , 2013 .

[127]  A. Vourlidas,et al.  INNER HELIOSPHERIC EVOLUTION OF A “STEALTH” CME DERIVED FROM MULTI-VIEW IMAGING AND MULTIPOINT IN SITU OBSERVATIONS. I. PROPAGATION TO 1 AU , 2013, 1311.6895.

[128]  R. Trines,et al.  ESTABLISHING A STEREOSCOPIC TECHNIQUE FOR DETERMINING THE KINEMATIC PROPERTIES OF SOLAR WIND TRANSIENTS BASED ON A GENERALIZED SELF-SIMILARLY EXPANDING CIRCULAR GEOMETRY , 2013 .

[129]  D. Hathaway,et al.  PREDICTING THE SUN'S POLAR MAGNETIC FIELDS WITH A SURFACE FLUX TRANSPORT MODEL , 2013, 1311.0844.

[130]  S. Poedts,et al.  Effect of gravitational stratification on the propagation of a CME , 2013, 1310.6960.

[131]  A. Vourlidas,et al.  Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging , 2013, 1310.6680.

[132]  P. MacNeice,et al.  Global Solar Free Magnetic Energy and Electric Current Density Distribution of Carrington Rotation 2124 , 2013, 1310.5790.

[133]  G. Zanna The multi-thermal emission in solar active regions , 2013 .

[134]  A. Yeates,et al.  Kinematic active region formation in a three-dimensional solar dynamo model , 2013, 1309.6342.

[135]  Haosheng Lin,et al.  VECTOR TOMOGRAPHY FOR THE CORONAL MAGNETIC FIELD. II. HANLE EFFECT MEASUREMENTS , 2013 .

[136]  S. Suess,et al.  The May 1997 SOHO‐Ulysses quadrature , 2013 .

[137]  S. Poedts,et al.  Magnetohydrodynamic simulations of the ejection of a magnetic flux rope , 2013 .

[138]  D. Mccomas,et al.  TRACKING CORONAL FEATURES FROM THE LOW CORONA TO EARTH: A QUANTITATIVE ANALYSIS OF THE 2008 DECEMBER 12 CORONAL MASS EJECTION , 2013 .

[139]  D. Berdichevsky On Fields and Mass Constraints for the Uniform Propagation of Magnetic-Flux Ropes Undergoing Isotropic Expansion , 2013 .

[140]  Y. Fan,et al.  Polarimetric Properties of Flux Ropes and Sheared Arcades in Coronal Prominence Cavities , 2013, 1304.7594.

[141]  B. Forland,et al.  THE MAGNETIC STRUCTURE OF SOLAR PROMINENCE CAVITIES: NEW OBSERVATIONAL SIGNATURE REVEALED BY CORONAL MAGNETOMETRY , 2013, 1304.7388.

[142]  Z. Du,et al.  FORCED FIELD EXTRAPOLATION: TESTING A MAGNETOHYDRODYNAMIC (MHD) RELAXATION METHOD WITH A FLUX-ROPE EMERGENCE MODEL , 2013 .

[143]  Alternating Twist Along an Erupting Prominence , 2013 .

[144]  H. Mason,et al.  CHIANTI—AN ATOMIC DATABASE FOR EMISSION LINES. XIII. SOFT X-RAY IMPROVEMENTS AND OTHER CHANGES , 2013 .

[145]  M. Aschwanden NONLINEAR FORCE-FREE MAGNETIC FIELD FITTING TO CORONAL LOOPS WITH AND WITHOUT STEREOSCOPY , 2012, 1212.2996.

[146]  S. Mancuso,et al.  Super- and sub-critical regions in shocks driven by radio-loud and radio-quiet CMEs , 2012, Journal of advanced research.

[147]  A. Vourlidas,et al.  Three-Dimensional Evolution of Erupted Flux Ropes from the Sun (2 – 20 R⊙) to 1 AU , 2012, 1211.2108.

[148]  R. Seguin,et al.  The Interface Region Imaging Spectrograph (IRIS) , 2012, 1401.2491.

[149]  F. Heidecke,et al.  The 1.5 meter solar telescope GREGOR , 2012 .

[150]  F. Auchère,et al.  ON THE ACCURACY OF THE DIFFERENTIAL EMISSION MEASURE DIAGNOSTICS OF SOLAR PLASMAS. APPLICATION TO SDO/AIA. II. MULTITHERMAL PLASMAS , 2012, 1210.2304.

[151]  S. Wu,et al.  A DATA-DRIVEN MODEL FOR THE GLOBAL CORONAL EVOLUTION , 2012 .

[152]  C. Russell,et al.  Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation , 2012 .

[153]  T. Howard,et al.  WHITE-LIGHT OBSERVATIONS OF SOLAR WIND TRANSIENTS AND COMPARISON WITH AUXILIARY DATA SETS , 2012 .

[154]  A. Vourlidas,et al.  How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs , 2012, 1207.1599.

[155]  B. Anderson,et al.  Remote and in situ observations of an unusual Earth‐directed coronal mass ejection from multiple viewpoints , 2012 .

[156]  The Graduate University for Advanced Studies,et al.  POLAR FIELD REVERSAL OBSERVATIONS WITH HINODE , 2012, 1205.2154.

[157]  V. Osherovich,et al.  Solar Wind Quasi-invariant for Slow and Fast Magnetic Clouds , 2012 .

[158]  M. Wheatland,et al.  GUIDING NONLINEAR FORCE-FREE MODELING USING CORONAL OBSERVATIONS: FIRST RESULTS USING A QUASI-GRAD–RUBIN SCHEME , 2012, 1202.5420.

[159]  E. Kontar,et al.  Differential Emission Measures from the Regularized Inversion of Hinode and SDO data , 2012, 1201.2642.

[160]  M. C. Toribio,et al.  LOFAR: The LOw-Frequency ARray , 2013, 1305.3550.

[161]  W. Pesnell,et al.  The Solar Dynamics Observatory (SDO) , 2012 .

[162]  J. T. Hoeksema,et al.  The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO) , 2012 .

[163]  J. Clem,et al.  THREE-DIMENSIONAL WAVY HELIOSPHERIC CURRENT SHEET DRIFTS , 2012 .

[164]  M. Wheatland,et al.  The Free Energy of NOAA Solar Active Region AR 11029 , 2011, 1110.4418.

[165]  M. Velli,et al.  Origins of Rolling, Twisting, and Non-radial Propagation of Eruptive Solar Events , 2011, 1211.1376.

[166]  K. Kusano,et al.  TWIST AND CONNECTIVITY OF MAGNETIC FIELD LINES IN THE SOLAR ACTIVE REGION NOAA 10930 , 2011 .

[167]  Emilia Kilpua,et al.  Interplanetary coronal mass ejections in the near-Earth solar wind during the minimum periods following solar cycles 22 and 23 , 2011 .

[168]  A. Rouillard Relating white light and in situ observations of coronal mass ejections: A review , 2011 .

[169]  P. Liewer,et al.  Stereoscopic Analysis of STEREO/SECCHI Data for CME Trajectory Determination , 2011 .

[170]  R. Pinto,et al.  COUPLING THE SOLAR DYNAMO AND THE CORONA: WIND PROPERTIES, MASS, AND MOMENTUM LOSSES DURING AN ACTIVITY CYCLE , 2011, 1106.0882.

[171]  A. Vourlidas,et al.  THE FIRST OBSERVATION OF A RAPIDLY ROTATING CORONAL MASS EJECTION IN THE MIDDLE CORONA , 2011 .

[172]  F. Auchère,et al.  TomograPy: A Fast, Instrument-Independent, Solar Tomography Software , 2011 .

[173]  M. Aschwanden,et al.  SOLAR CORONA LOOP STUDIES WITH THE ATMOSPHERIC IMAGING ASSEMBLY. I. CROSS-SECTIONAL TEMPERATURE STRUCTURE , 2011, 1103.0228.

[174]  D. Mackay,et al.  MODELING THE DISPERSAL OF AN ACTIVE REGION: QUANTIFYING ENERGY INPUT INTO THE CORONA , 2011, 1102.5296.

[175]  R. Frazin,et al.  The WHI Corona from Differential Emission Measure Tomography , 2011 .

[176]  M. Georgoulis,et al.  Nonlinear Force-Free Reconstruction of the Global Solar Magnetic Field: Methodology , 2010, 1011.5356.

[177]  V. S. Titov,et al.  MAGNETIC TOPOLOGY OF CORONAL HOLE LINKAGES , 2010, 1011.0009.

[178]  Clive G. Page,et al.  Definition of the Flexible Image Transport System (FITS), version 3.0 , 2010 .

[179]  N. Lugaz,et al.  Accuracy and Limitations of Fitting and Stereoscopic Methods to Determine the Direction of Coronal Mass Ejections from Heliospheric Imagers Observations , 2010, 1010.1949.

[180]  J. Luhmann,et al.  Sun to 1 AU propagation and evolution of a slow streamer-blowout coronal mass ejection , 2010 .

[181]  D. Mackay,et al.  A nonpotential model for the Sun's open magnetic flux , 2010, 1006.4011.

[182]  Richard A. Frazin,et al.  Three-Dimensional Electron Density from Tomographic Analysis of LASCO-C2 Images of the K-Corona Total Brightness , 2010 .

[183]  Jackie A. Davies,et al.  OBSERVATIONAL EVIDENCE OF A CORONAL MASS EJECTION DISTORTION DIRECTLY ATTRIBUTABLE TO A STRUCTURED SOLAR WIND , 2010 .

[184]  Frank Hill,et al.  EVIDENCE THAT TEMPORAL CHANGES IN SOLAR SUBSURFACE HELICITY PRECEDE ACTIVE REGION FLARING , 2010 .

[185]  Baptiste Cecconi,et al.  AMDA, Automated Multi-Dataset Analysis: A Web-Based Service Provided by the CDPP , 2010 .

[186]  Research,et al.  COMPARISON OF A GLOBAL MAGNETIC EVOLUTION MODEL WITH OBSERVATIONS OF CORONAL MASS EJECTIONS , 2009, 0912.3347.

[187]  S. Solanki,et al.  Nonlinear force-free modelling: influence of inaccuracies in the measured magnetic vector , 2009, 0912.3002.

[188]  U. Michigan,et al.  TOWARD A REALISTIC THERMODYNAMIC MAGNETOHYDRODYNAMIC MODEL OF THE GLOBAL SOLAR CORONA , 2009, 0912.2647.

[189]  R. Howard,et al.  THE THREE-DIMENSIONAL MORPHOLOGY OF A COROTATING INTERACTION REGION IN THE INNER HELIOSPHERE , 2010 .

[190]  P. Démoulin,et al.  Magnetic cloud models with bent and oblate cross-section boundaries , 2009 .

[191]  V. Kashyap,et al.  SOME LIKE IT HOT: CORONAL HEATING OBSERVATIONS FROM HINODE X-RAY TELESCOPE AND RHESSI , 2009 .

[192]  Austria,et al.  LINKING REMOTE IMAGERY OF A CORONAL MASS EJECTION TO ITS IN SITU SIGNATURES AT 1 AU , 2009, 0910.1188.

[193]  Thomas R. Metcalf,et al.  Resolving the 180° Ambiguity in Solar Vector Magnetic Field Data: Evaluating the Effects of Noise, Spatial Resolution, and Method Assumptions , 2009 .

[194]  N. Lugaz,et al.  Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere - application to CME-CME interaction , 2009, 0909.0534.

[195]  Joseph M. Davila,et al.  On the Tomographic Reconstruction of the 3D Electron Density for the Solar Corona from STEREO COR1 Data , 2009 .

[196]  M. Lockwood,et al.  A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft , 2009 .

[197]  R. Howard,et al.  Reconstructing the 3D Morphology of the 17 May 2008 CME , 2009 .

[198]  M. Aschwanden,et al.  FIRST THREE-DIMENSIONAL RECONSTRUCTIONS OF CORONAL LOOPS WITH THE STEREO A+B SPACECRAFT. III. INSTANT STEREOSCOPIC TOMOGRAPHY OF ACTIVE REGIONS , 2009 .

[199]  A. Vourlidas,et al.  Forward Modeling of Coronal Mass Ejections Using STEREO/SECCHI Data , 2009 .

[200]  W. Thompson,et al.  3D triangulation of a Sun-grazing comet , 2009 .

[201]  Haiyang Li,et al.  EVIDENCE FOR A PRE-ERUPTIVE TWISTED FLUX ROPE USING THE THEMIS VECTOR MAGNETOGRAPH , 2009 .

[202]  F. Kamalabadi,et al.  3D Temperatures and Densities of the Solar Corona via Multi-Spacecraft EUV Tomography: Analysis of Prominence Cavities , 2009 .

[203]  Carolus J. Schrijver,et al.  A CRITICAL ASSESSMENT OF NONLINEAR FORCE-FREE FIELD MODELING OF THE SOLAR CORONA FOR ACTIVE REGION 10953 , 2009, 0902.1007.

[204]  J. Davies,et al.  A synoptic view of solar transient evolution in the inner heliosphere using the Heliospheric Imagers on STEREO , 2009 .

[205]  M. Shimojo,et al.  The Magnetic Landscape of the Sun's Polar Region , 2008, 0807.4631.

[206]  M. Lockwood,et al.  First imaging of corotating interaction regions using the STEREO spacecraft , 2008 .

[207]  E. Christian,et al.  The STEREO Mission: An Introduction , 2008 .

[208]  L. Burlaga,et al.  Heliospheric Images of the Solar Wind at Earth , 2008 .

[209]  T. Rodet,et al.  A Time-Evolving 3D Method Dedicated to the Reconstruction of Solar Plumes and Results Using Extreme Ultraviolet Data , 2008, 0802.0113.

[210]  R. Casini,et al.  An Instrument to Measure Coronal Emission Line Polarization , 2008 .

[211]  D. Mackay,et al.  Modelling the Global Solar Corona II: Coronal Evolution and Filament Chirality Comparison , 2007, 0711.2887.

[212]  J. Owens,et al.  The Solar Optical Telescope for the Hinode Mission: An Overview , 2007, 0711.1715.

[213]  J. Linker,et al.  MULTISPECTRAL EMISSION OF THE SUN DURING THE FIRST WHOLE SUN MONTH: MAGNETOHYDRODYNAMIC SIMULATIONS , 2008 .

[214]  B. Pontieu,et al.  Chromospheric Alfvénic Waves Strong Enough to Power the Solar Wind , 2007, Science.

[215]  B. Inhester,et al.  Optimization approach for the computation of magnetohydrostatic coronal equilibria in spherical geometry , 2007, 0801.2916.

[216]  D. Webb,et al.  V arc interplanetary coronal mass ejections observed with the Solar Mass Ejection Imager , 2007 .

[217]  D. Mackay,et al.  Modelling the Global Solar Corona: Filament Chirality Observations and Surface Simulations , 2007, 0707.3256.

[218]  S. Krucker,et al.  Solar Flare Electron Spectra at the Sun and near the Earth , 2007 .

[219]  P. Démoulin,et al.  Progressive Transformation of a Flux Rope to an ICME , 2007, 0706.2889.

[220]  M. Schuessler,et al.  A solar surface dynamo , 2007, astro-ph/0702681.

[221]  Y.-M. Wang,et al.  Coronal Pseudostreamers , 2007 .

[222]  M. Owens Magnetic cloud distortion resulting from propagation through a structured solar wind: Models and observations , 2006 .

[223]  R. Casini,et al.  Spectral Lines for Polarization Measurements of the Coronal Magnetic Field. IV. Stokes Signals in Current-carrying Fields , 2006 .

[224]  T. Neukirch,et al.  An optimization principle for the computation of MHD equilibria in the solar corona , 2006, astro-ph/0612625.

[225]  G. A. Gary,et al.  An Overview of Existing Algorithms for Resolving the 180° Ambiguity in Vector Magnetic Fields: Quantitative Tests with Synthetic Data , 2006 .

[226]  A. Vourlidas,et al.  The Proper Treatment of Coronal Mass Ejection Brightness: A New Methodology and Implications for Observations , 2006 .

[227]  Roger K. Ulrich,et al.  Carrington Coordinates and Solar Maps , 2006 .

[228]  D. Mackay,et al.  Models of the Large-Scale Corona. I. Formation, Evolution, and Liftoff of Magnetic Flux Ropes , 2006 .

[229]  J. Aly,et al.  Well posed reconstruction of the solar coronal magnetic field , 2006 .

[230]  C. Wehrli Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center , 2006 .

[231]  International Scientific Conference on Chromospheric and Coronal Magnetic Fields , 2005 .

[232]  P. Lamy,et al.  On the 3-dimensional structure of the streamer belt of the solar corona , 2005 .

[233]  F. Kamalabadi,et al.  On the Use of Total Brightness Measurements for Tomography of the Solar Corona , 2005 .

[234]  F. Kamalabadi,et al.  Rotational Tomography For 3d Reconstruction Of The White-Light And Euv Corona In The Post-Soho Era , 2005 .

[235]  R. Keppens,et al.  Extrapolation of a nonlinear force-free field containing a highly twisted magnetic loop , 2005 .

[236]  F. Auchère Effect of the H I Lyα Chromospheric Flux Anisotropy on the Total Intensity of the Resonantly Scattered Coronal Radiation , 2005 .

[237]  T. Wiegelmann Optimization code with weighting function for the reconstruction of coronal magnetic fields , 2008, 0802.0124.

[238]  E. Benevolenskaya Polar magnetic flux on the Sun in 1996–2003 from SOHO/MDI data , 2004 .

[239]  Joseph B. Gurman,et al.  The Virtual Solar Observatory: status and initial operational experience , 2004, SPIE Astronomical Telescopes + Instrumentation.

[240]  A. V. Ballegooijen,et al.  Observations and Modeling of a Filament on the Sun , 2004 .

[241]  J. Kuhn,et al.  Coronal Magnetic Field Measurements , 2004 .

[242]  P. Riley,et al.  Kinematic Treatment of Coronal Mass Ejection Evolution in the Solar Wind , 2004 .

[243]  C. Schrijver,et al.  Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME , 2003 .

[244]  S. Suess,et al.  Temporal Evolution of a Streamer Complex: Coronal and in Situ Plasma Parameters , 2003 .

[245]  Stephen L. Keil,et al.  Innovative Telescopes and Instrumentation for Solar Astrophysics , 2003 .

[246]  C. Schrijver,et al.  Photospheric and heliospheric magnetic fields , 2003 .

[247]  N. Raouafi,et al.  Linear polarization of the O VI λ l031.92 coronal line. II. Constraints on the magnetic field and the solar wind velocity field vectors in the coronal polar holes , 2002 .

[248]  N. Raouafi Stokes parameters of resonance lines scattered by a moving, magnetic medium - Theory of the two-level atom , 2002 .

[249]  M. Hidalgo,et al.  Elliptical cross‐section model for the magnetic topology of magnetic clouds , 2002 .

[250]  Michael W. Marcellin,et al.  JPEG2000 - image compression fundamentals, standards and practice , 2002, The Kluwer International Series in Engineering and Computer Science.

[251]  Jeffrey R. Hall,et al.  Determination of three‐dimensional structure of coronal streamers and relationship to the solar magnetic field , 2001 .

[252]  A. Kosovichev,et al.  Detection of High-Latitude Waves of Solar Coronal Activity in Extreme-Ultraviolet Data from the Solar and Heliospheric Observatory EUV Imaging Telescope , 2001 .

[253]  A. Vourlidas,et al.  Deriving the Electron Density of the Solar Corona from the Inversion of Total Brightness Measurements , 2001 .

[254]  C. J. Wolfson,et al.  Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) , 2000, SPIE Optics + Photonics.

[255]  Steven Tomczyk,et al.  A New Precise Measurement of the Coronal Magnetic Field Strength , 2000 .

[256]  J. Worden,et al.  An Evolving Synoptic Magnetic Flux map and Implications for the Distribution of Photospheric Magnetic Flux , 2000 .

[257]  N. Rich,et al.  Evolution of coronal streamer structure during the rising phase of solar cycle 23 , 2000 .

[258]  D. Odstrcil,et al.  Distortion of the interplanetary magnetic field by three‐dimensional propagation of coronal mass ejections in a structured solar wind , 1999 .

[259]  R. Howard,et al.  Continuous tracking of coronal outflows : Two kinds of coronal mass ejections , 1999 .

[260]  R. Casini,et al.  Spectral Lines for Polarization Measurements of the Coronal Magnetic Field. II. Consistent Treatment of the Stokes Vector forMagnetic-Dipole Transitions , 1999 .

[261]  R. Howard,et al.  LASCO and EIT Observations of Helical Structure in Coronal Mass Ejections , 1999 .

[262]  D. Biesecker,et al.  Solar minimum streamer densities and temperatures using Whole Sun Month coordinated data sets , 1999 .

[263]  D. Schnack,et al.  Magnetohydrodynamic modeling of the global solar corona , 1999 .

[264]  M. Karovska,et al.  Comparison of Two Coronal Mass Ejections Observed by EIT and LASCO with a Model of an Erupting Magnetic Flux Rope , 1999 .

[265]  S. Fineschi,et al.  An Empirical Model of a Polar Coronal Hole at Solar Minimum , 1999 .

[266]  Andre Csillaghy,et al.  High-Energy Solar Spectroscopic Imager (HESSI) Small Explorer mission for the next (2000) solar maximum , 1998, Optics & Photonics.

[267]  S. Freeland,et al.  Data Analysis with the SolarSoft System , 1998 .

[268]  V. Kashyap,et al.  Markov-Chain Monte Carlo Reconstruction of Emission Measure Distributions: Application to Solar Extreme-Ultraviolet Spectra , 1998 .

[269]  T. Kosugi,et al.  On the relationship between coronal mass ejections and magnetic clouds , 1998 .

[270]  Stephen M. White,et al.  Coronal Currents, Magnetic Fields, and Heating in a Solar Active Region , 1998 .

[271]  Philip G. Judge,et al.  Spectral Lines for Polarization Measurements of the Coronal Magnetic Field. I. Theoretical Intensities , 1998 .

[272]  R. Howard,et al.  The Shape of the Outer Corona during Cycle 21 , 1998 .

[273]  J. Davila,et al.  Coronal Magnetography of a Solar Active Region Using Coordinated SERTS and VLA Observations , 1997 .

[274]  P. Lamy,et al.  Origin and Evolution of Coronal Streamer Structure During the 1996 Minimum Activity Phase , 1997 .

[275]  Stephen M. White,et al.  Radio Observations of Gyroresonance Emission from Coronal Magnetic Fields , 1997 .

[276]  S. White,et al.  SIGNATURES OF CORONAL CURRENTS IN MICROWAVE IMAGES , 1997 .

[277]  Michael S. Wheatland,et al.  An Optimization Approach to Reconstructing Force-free Fields , 1997 .

[278]  C. Lindsey,et al.  Helioseismic Holography , 1997 .

[279]  R. K. Ulrich,et al.  The Global Oscillation Network Group (GONG) Project , 1996, Science.

[280]  C. H. Acton,et al.  Ancillary data services of NASA's Navigation and Ancillary Information Facility , 1996 .

[281]  Ingrid Mann,et al.  The Near-Infrared Coronal Spectrum , 1996 .

[282]  V. Domingo,et al.  The SOHO mission: An overview , 1995 .

[283]  V. Hansteen,et al.  Coronal heating, densities, and temperatures and solar wind acceleration , 1995 .

[284]  F. Hill,et al.  The global oscillation network group site survey , 1994 .

[285]  Shadia Rifai Habbal,et al.  On the derivation of empirical limits on the helium abundance in coronal holes below 1.5 solar radius , 1994 .

[286]  M. Freeman,et al.  A study of an expanding interplanetary magnetic cloud and its interaction with the Earth's magnetosphere: The interplanetary aspect , 1993 .

[287]  B. Low Three-dimensional structures of magnetostatic atmospheres. IV: Magnetic structures over a solar active region , 1992 .

[288]  E. Parker Nanoflares and the solar X-ray corona , 1988 .

[289]  G. Withbroe The temperature structure, mass, and energy flow in the corona and inner solar wind , 1988 .

[290]  G. Noci,et al.  Solar wind diagnostics from Doppler-enhanced scattering , 1987 .

[291]  J. T. Hoeksema,et al.  The structure of the heliospheric current sheet: 1978–1982 , 1983 .

[292]  S. Sahal-Bréchot,et al.  The Hanle effect of the coronal Lα line of hydrogen: Theoretical investigation , 1982 .

[293]  C. Querfeld The formation and interpretation of the Fe XIII 10747 A coronal emission line , 1982 .

[294]  George L. Withbroe,et al.  Probing the solar wind acceleration region using spectroscopic techniques , 1982 .

[295]  Eric Ronald Priest,et al.  Solar magneto-hydrodynamics , 1982 .

[296]  F. Mariani,et al.  Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP-8 observations , 1981 .

[297]  T. Holzer,et al.  Energy addition in the solar wind , 1980 .

[298]  T. Holzer,et al.  Conductive solar wind models in rapidly diverging flow geometries , 1980 .

[299]  C. Hyder,et al.  Hα Doppler brightening and Lyman-α Doppler dimming in moving Hα prominences , 1970 .

[300]  Donald E. Billings,et al.  A Guide to the Solar Corona , 2013 .

[301]  G. Righini,et al.  Astrophysics and space science , 1966 .

[302]  S. Pottasch On the Chemical Composition of the Solar Corona , 1964 .

[303]  Wilhelm Hanle,et al.  Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz , 1924 .