Models and data analysis tools for the Solar Orbiter mission
暂无分享,去创建一个
Philippe Louarn | Baptiste Cecconi | Silvano Fineschi | Alessandro Bemporad | Ester Antonucci | M. Bouchemit | Luca Teriaca | Angelos Vourlidas | B. Nicula | M. Romoli | Vincenzo Andretta | Daniele Spadaro | Vincent Génot | M. Indurain | Antoine Strugarek | Paolo Pagano | E. Buchlin | M. Haberreiter | L. Etesi | N. Vilmer | Miho Janvier | Andrzej Fludra | David Berghmans | D. Müller | J. Hirzberger | O. C. St. Cyr | Holly Gilbert | Andrew P. Walsh | Teresa Nieves-Chinchilla | A. Fedorov | Anastasios Anastasiadis | J. Linker | C. Watson | Cis Verbeeck | I. Cernuda | Thomas Wiegelmann | E. Budnik | Arnaud Masson | A. Lagg | J. C. del Toro Iniesta | Milan Maksimovic | Raul Gomez-Herrero | C. Sasso | Allan Sacha Brun | M. Lavarra | David Pérez-Suárez | Joseph M. Davila | D. Orozco Suárez | K. Kozarev | Gottfried Mann | Christopher J. Owen | P. Osuna | I. Zouganelis | Roberto Susino | T. Straus | A. P. Rouillard | R. F. Pinto | A. De Groof | W. T. Thompson | S. Dolei | Kévin Dalmasse | M. Alexandre | N. E. Raouafi | C. N. Arge | N. Poirier | T. Amari | A. Aran | Frédéric Auchère | L. R. Bellot Rubio | X. Bonnin | S. Caminade | J. Carlyle | F. Espinosa Lara | M. K. Georgoulis | A. Giunta | S. Guest | D. M. Hassler | C. J. Henney | R. A. Howard | Timothy S. Horbury | S. I. Jones | E. Kraaikamp | A. Kouloumvakos | S. Krucker | B. Lavraud | Shane A. Maloney | H. Önel | A. Papaioannou | Javier Rodriguez-Pacheco | S. Parenti | E. Pariat | Hardi Peter | S. Plunkett | J. Pomoell | J. M. Raines | T. L. Riethmüller | N. Rich | L. Rodriguez | L. Sanchez | S. K. Solanki | R. Ventura | A. Warmuth | D. Williams | Y. Wu | Andrei Zhukov | S. Guest | X. Bonnin | S. Fineschi | N. Raouafi | S. Solanki | N. Poirier | D. Pérez-Suárez | D. Hassler | T. Horbury | P. Louarn | C. Owen | L. B. Rubio | J. C. D. T. Iniesta | S. Krucker | A. Warmuth | A. Lagg | J. Linker | C. Arge | A. Vourlidas | N. Vilmer | B. Lavraud | A. Rouillard | R. Pinto | F. Auchère | M. Janvier | M. Maksimović | K. Dalmasse | J. Raines | V. Génot | M. Bouchemit | B. Cecconi | E. Budnik | R. Gómez-Herrero | A. Papaioannou | T. Nieves‐Chinchilla | M. Georgoulis | T. Riethmüller | A. Anastasiadis | B. Nicula | P. Pagano | T. Wiegelmann | T. Amari | E. Pariat | A. Fedorov | D. Spadaro | M. Romoli | J. Davila | L. Etesi | H. Önel | J. Rodríguez-Pacheco | D. Müller | O. C. Cyr | H. Gilbert | D. Berghmans | É. Buchlin | M. Haberreiter | E. Kraaikamp | S. Parenti | H. Peter | L. Rodriguez | L. Teriaca | C. Verbeeck | A. Zhukov | J. Hirzberger | I. Zouganelis | S. Caminade | A. Fludra | A. Giunta | W. Thompson | D. Williams | R. Howard | A. Groof | K. Kozarev | A. Brun | E. Antonucci | S. Jones | C. Henney | R. Susino | V. Andretta | J. Pomoell | S. Plunkett | N. Rich | A. Bemporad | A. Strugarek | M. Lavarra | S. Maloney | À. Aran | P. Osuna | A. Walsh | C. Watson | L. Sánchez | S. Dolei | F. Lara | A. Masson | D. Suárez | C. Sasso | T. Straus | I. Cernuda | M. Indurain | J. Carlyle | A. Kouloumvakos | R. Ventura | A. Kouloumvakos | G. Mann | M. Alexandre | Y. Wu | D. Súarez | T. Nieves-chinchilla
[1] A. M. Hellín,et al. The Energetic Particle Detector , 2020 .
[2] C. Russell,et al. The Solar Orbiter magnetometer , 2020, Astronomy & Astrophysics.
[3] P. Astier,et al. The Solar Orbiter Radio and Plasma Waves (RPW) instrument , 2020, Astronomy & Astrophysics.
[4] X. Bonnin,et al. Coordination of the in situ payload of Solar Orbiter , 2020, Astronomy & Astrophysics.
[5] S. Fineschi,et al. Coordination within the remote sensing payload on the Solar Orbiter mission , 2020, Astronomy & Astrophysics.
[6] C. Mariano,et al. The Solar Orbiter Heliospheric Imager (SoloHI) , 2020, Astronomy & Astrophysics.
[7] D. Plettemeier,et al. The Solar Orbiter Science Activity Plan , 2020, Astronomy & Astrophysics.
[8] A. Spencer,et al. The Solar Orbiter Solar Wind Analyser (SWA) suite , 2020, Astronomy & Astrophysics.
[9] A. Spencer,et al. The Solar Orbiter EUI instrument: The Extreme Ultraviolet Imager , 2020, Astronomy & Astrophysics.
[10] Giampiero Naletto,et al. Metis: the Solar Orbiter visible light and ultraviolet coronal imager , 2019, Astronomy & Astrophysics.
[11] S. Guest,et al. The Solar Orbiter SPICE instrument , 2019, 1909.01183.
[12] J. C. del Toro Iniesta,et al. The Polarimetric and Helioseismic Imager on Solar Orbiter , 2019, Astronomy & Astrophysics.
[13] D. S. Bloomfield,et al. The Spectrometer/Telescope for Imaging X-rays (STIX) , 2012, Astronomy & Astrophysics.
[14] F. Frassetto,et al. Effect of the non-uniform solar chromospheric Lyα radiation on determining the coronal H I outflow velocity , 2019, Astronomy & Astrophysics.
[15] F. Frassetto,et al. Comparing extrapolations of the coronal magnetic field structure at 2.5R⊙with multi-viewpoint coronagraphic observations , 2019, Astronomy & Astrophysics.
[16] A. Vourlidas,et al. Connecting the Properties of Coronal Shock Waves with Those of Solar Energetic Particles , 2019, The Astrophysical Journal.
[17] D. Nychka,et al. Data-optimized Coronal Field Model. I. Proof of Concept , 2019, The Astrophysical Journal.
[18] E. Thrane,et al. The Mass Distribution of Galactic Double Neutron Stars , 2019, The Astrophysical Journal.
[19] W. Matthaeus,et al. The Steady Global Corona and Solar Wind: A Three-dimensional MHD Simulation with Turbulence Transport and Heating , 2018, The Astrophysical Journal.
[20] T. Wiegelmann,et al. On the Extrapolation of Magnetohydrostatic Equilibria on the Sun , 2018, The Astrophysical Journal.
[21] Helen E. Mason,et al. Solar UV and X-ray spectral diagnostics , 2018, Living Reviews in Solar Physics.
[22] J. C. del Toro Iniesta,et al. SOPHISM: An End-to-end Software Instrument Simulator , 2018, The Astrophysical Journal Supplement Series.
[23] P. Chopin,et al. Global Non-Potential Magnetic Models of the Solar Corona During the March 2015 Eclipse , 2018, Space science reviews.
[24] A. Vourlidas,et al. Elliptic-cylindrical Analytical Flux Rope Model for Magnetic Clouds , 2018, The Astrophysical Journal.
[25] Jing-xiu Wang,et al. Predictability of the Solar Cycle Over One Cycle , 2018, The Astrophysical Journal.
[26] P. Charbonneau,et al. On the Sensitivity of Magnetic Cycles in Global Simulations of Solar-like Stars , 2018, The Astrophysical Journal.
[27] A. Vourlidas,et al. Streamer-blowout Coronal Mass Ejections: Their Properties and Relation to the Coronal Magnetic Field Structure , 2018, The Astrophysical Journal.
[28] S. Poedts,et al. EUHFORIA: European heliospheric forecasting information asset , 2018 .
[29] P. Hess,et al. Gradual Streamer Expansions and the Relationship between Blobs and Inflows , 2018, The Astrophysical Journal.
[30] Sung-Hong Park,et al. Testing and Improving a Set of Morphological Predictors of Flaring Activity , 2018, Solar Physics.
[31] A. Rouillard,et al. Modelling of proton acceleration in application to a ground level enhancement , 2018, Astronomy & Astrophysics.
[32] M. Velli,et al. Solar Physics From Unconventional Viewpoints , 2018, Front. Astron. Space Sci..
[33] Komei Sugiura,et al. Deep Flare Net (DeFN) Model for Solar Flare Prediction , 2018, 1805.03421.
[34] E. Landi,et al. The First Empirical Determination of the Fe10+ and Fe13+ Freeze-in Distances in the Solar Corona , 2018, The Astrophysical Journal.
[35] E. Cliver,et al. A Short-term ESPERTA-based Forecast Tool for Moderate-to-extreme Solar Proton Events , 2018 .
[36] M. Georgoulis. The Ambivalent Role of Field-Aligned Electric Currents in the Solar Atmosphere , 2018 .
[37] Jinfu Liu,et al. Deep Learning Based Solar Flare Forecasting Model. I. Results for Line-of-sight Magnetograms , 2018 .
[38] M. Wheatland,et al. Electric Currents in Geospace and Beyond. , 2018 .
[39] P. Pagano,et al. A new technique for observationally derived boundary conditions for space weather , 2018, 1802.07516.
[40] Graham Barnes,et al. The NWRA Classification Infrastructure: Description and Extension to the Discriminant Analysis Flare Forecasting System (DAFFS) , 2018, 1802.06864.
[41] F. Alauzet,et al. Magnetic cage and rope as the key for solar eruptions , 2018, Nature.
[42] A. Rouillard,et al. Production of Sunspots and Their Effects on the Corona and Solar Wind: Insights from a New 3D Flux-Transport Dynamo Model , 2018, Front. Astron. Space Sci..
[43] A. Vourlidas,et al. Understanding the Internal Magnetic Field Configurations of ICMEs Using More than 20 Years of Wind Observations , 2018 .
[44] F. Frassetto,et al. Mapping the solar wind HI outflow velocity in the inner heliosphere by coronagraphic ultraviolet and visible-light observations , 2018 .
[45] J. Linker,et al. Regularized Biot–Savart Laws for Modeling Magnetic Flux Ropes , 2017, 1712.06708.
[46] N. Crosby,et al. Solar Particle Radiation Storms Forecasting and Analysis: The HESPERIA HORIZON 2020 Project and Beyond , 2018 .
[47] Marlon Núñez,et al. HESPERIA Forecasting Tools: Real-Time and Post-Event , 2018 .
[48] M. Gangloff,et al. Science data visualization in planetary and heliospheric contexts with 3DView , 2018 .
[49] B. V. Semenov,et al. A look towards the future in the handling of space science mission geometry , 2018 .
[50] S. Yardley,et al. Simulating the Coronal Evolution of AR 11437 Using SDO/HMI Magnetograms , 2017, 1712.00396.
[51] B. Lavraud,et al. The Temporal and Spatial Scales of Density Structures Released in the Slow Solar Wind During Solar Activity Maximum , 2017, 1711.02486.
[52] P. Charbonneau,et al. The Effect of “Rogue” Active Regions on the Solar Cycle , 2017, 1712.02185.
[53] K. Kozarev,et al. The Coronal Analysis of SHocks and Waves (CASHeW) framework , 2017, 1710.05302.
[54] A. Brun,et al. Global Solar Magnetic Field Organization in the Outer Corona: Influence on the Solar Wind Speed and Mass Flux Over the Cycle , 2017, 1710.02908.
[55] O. Talagrand,et al. Variational Estimation of the Large-scale Time-dependent Meridional Circulation in the Sun: Proofs of Concept with a Solar Mean Field Dynamo Model , 2017, 1710.02114.
[56] Pete Riley,et al. On the Link between the Release of Solar Energetic Particles Measured at Widespread Heliolongitudes and the Properties of the Associated Coronal Shocks , 2017 .
[57] A. Brun,et al. Magnetism, dynamo action and the solar-stellar connection , 2017, Living Reviews in Solar Physics.
[58] Manolis K. Georgoulis,et al. Predicting Flares and Solar Energetic Particle Events: The FORSPEF Tool , 2017 .
[59] A. Bemporad. Exploring the Inner Acceleration Region of Solar Wind: A Study Based on Coronagraphic UV and Visible Light Data , 2017 .
[60] Manolis K. Georgoulis,et al. Non-neutralized Electric Currents in Solar Active Regions and Flare Productivity , 2017, 1708.07087.
[61] N. Lugaz,et al. The Physical Processes of CME/ICME Evolution , 2017 .
[62] Philippe Beaudoin,et al. Reconciling solar and stellar magnetic cycles with nonlinear dynamo simulations , 2017, Science.
[63] C. Russell. Space Weather in the Heliosphere , 2017, Proceedings of the International Astronomical Union.
[64] R. Ventura,et al. Investigating the behaviour of neutral hydrogen Lyα spectral line width in polar coronal holes at solar minimum , 2017 .
[65] M. Miesch,et al. Solar Cycle Variability Induced by Tilt Angle Scatter in a Babcock–Leighton Solar Dynamo Model , 2017, 1706.08933.
[66] M. Lockwood,et al. Coronal mass ejections are not coherent magnetohydrodynamic structures , 2017, Scientific Reports.
[67] P. Noterdaeme,et al. The high A_V Quasar Survey: A z=2.027 metal-rich damped Lyman-alpha absorber towards a red quasar at z=3.21 , 2017, 1706.07016.
[68] Haimin Wang,et al. Predicting Solar Flares Using SDO/HMI Vector Magnetic Data Products and the Random Forest Algorithm , 2017, 1706.02422.
[69] Observational signatures of a kink-unstable coronal flux rope using Hinode/EIS , 2017, 1705.05114.
[70] S. Tomczyk,et al. Magnetic Nulls and Super-radial Expansion in the Solar Corona , 2017, The astrophysical journal. Letters.
[71] A. Rouillard,et al. The magnetic connectivity of coronal shocks from behind-the-limb flares to the visible solar surface during γ-ray events , 2017, 1703.07563.
[72] B. Inhester,et al. Nonlinear Force-free Coronal Magnetic Stereoscopy , 2017, 1709.04177.
[73] N. André,et al. A propagation tool to connect remote-sensing observations with in-situ measurements of heliospheric structures , 2017, 1702.00399.
[74] T. Nieves‐Chinchilla,et al. A STEREO Survey of Magnetic Cloud Coronal Mass Ejections Observed at Earth in 2008–2012 , 2017, 1701.01682.
[75] A. Rouillard,et al. A Multiple Flux-tube Solar Wind Model , 2016, 1611.08744.
[76] A. Isavnin,et al. FRiED: A NOVEL THREE-DIMENSIONAL MODEL OF CORONAL MASS EJECTIONS , 2016, 1703.01659.
[77] B. Lavraud,et al. Observational Evidence for the Associated Formation of Blobs and Raining Inflows in the Solar Corona , 2016, 1612.05487.
[78] M. Lockwood,et al. The Solar Probe Plus Mission: Humanity’s First Visit to Our Star , 2016 .
[79] S. Solanki,et al. A New MHD-assisted Stokes Inversion Technique , 2016, 1611.05175.
[80] J. Byers,et al. Sparse Bayesian Inference and the Temperature Structure of the Solar Corona , 2016, 1610.05972.
[81] P. Pagano,et al. Origin and Ion Charge State Evolution of Solar Wind Transients during 4 – 7 August 2011 , 2016, 1610.05048.
[82] D. S. Bloomfield,et al. A COMPARISON OF FLARE FORECASTING METHODS. I. RESULTS FROM THE “ALL-CLEAR” WORKSHOP , 2016, 1608.06319.
[83] R. Casini,et al. Scientific objectives and capabilities of the Coronal Solar Magnetism Observatory , 2016 .
[84] P. Fernique,et al. VESPA: a community-driven Virtual Observatory in Planetary Science , 2016, 1705.09727.
[85] D. Mackay,et al. IMPACT OF AN L5 MAGNETOGRAPH ON NONPOTENTIAL SOLAR GLOBAL MAGNETIC FIELD MODELING , 2016 .
[86] D. Nychka,et al. ROAM: A Radial-Basis-Function Optimization Approximation Method for Diagnosing the Three-Dimensional Coronal Magnetic Field , 2016, Front. Astron. Space Sci..
[87] S. Fineschi,et al. Diagnostics of Coronal Magnetic Fields through the Hanle Effect in UV and IR Lines , 2016, Front. Astron. Space Sci..
[88] Charles J. Farrugia,et al. A CIRCULAR-CYLINDRICAL FLUX-ROPE ANALYTICAL MODEL FOR MAGNETIC CLOUDS , 2016 .
[89] A. Warmuth,et al. DERIVING THE PROPERTIES OF CORONAL PRESSURE FRONTS IN 3D: APPLICATION TO THE 2012 MAY 17 GROUND LEVEL ENHANCEMENT , 2016, 1605.05208.
[90] S. Kahler,et al. Characterizing Solar Energetic Particle Event Profiles with Two-Parameter Fits , 2016 .
[91] J. Lyon,et al. Time‐dependent magnetohydrodynamic simulations of the inner heliosphere , 2016 .
[92] S. White,et al. FORWARD: A Toolset for Multiwavelength Coronal Magnetometry , 2016, Front. Astron. Space Sci..
[93] S. Tomczyk,et al. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS , 2015, 1502.07200.
[94] R. Frazin,et al. Time-dependent tomographic reconstruction of the solar corona , 2014, Astron. Comput..
[95] M. Dikpati,et al. Recent Advances on Solar Global Magnetism and Variability , 2015 .
[96] Alexandra Tritschler,et al. Cross-Calibrating Sunspot Magnetic Field Strength Measurements from the McMath–Pierce Solar Telescope and the Dunn Solar Telescope , 2015 .
[97] G. Petrie. Solar Magnetism in the Polar Regions , 2015 .
[98] D. Odstrcil,et al. Ensemble Modeling of the 23 July 2012 Coronal Mass Ejection , 2015 .
[99] B. Pontieu,et al. NUMERICAL SIMULATIONS OF CORONAL HEATING THROUGH FOOTPOINT BRAIDING , 2015, 1508.07234.
[100] P. Pagano,et al. Future capabilities of CME polarimetric 3D reconstructions with the METIS instrument: A numerical test , 2015, 1508.05276.
[101] Coronal magnetic field modeling using stereoscopy constraints , 2015 .
[102] R. Ventura,et al. Visible light and ultraviolet observations of coronal structures: physical properties of an equatorial streamer and modelling of the F corona , 2015 .
[103] C. Schrijver,et al. THERMAL DIAGNOSTICS WITH THE ATMOSPHERIC IMAGING ASSEMBLY ON BOARD THE SOLAR DYNAMICS OBSERVATORY: A VALIDATED METHOD FOR DIFFERENTIAL EMISSION MEASURE INVERSIONS , 2015, 1504.03258.
[104] M. Schüssler,et al. The crucial role of surface magnetic fields for the solar dynamo , 2015, Science.
[105] Stephen M. White,et al. Forecasting solar extreme and far ultraviolet irradiance , 2015 .
[106] R. Frazin,et al. A STEADY-STATE PICTURE OF SOLAR WIND ACCELERATION AND CHARGE STATE COMPOSITION DERIVED FROM A GLOBAL WAVE-DRIVEN MHD MODEL , 2014, 1412.8288.
[107] C. Arge,et al. Data Assimilation in the ADAPT Photospheric Flux Transport Model , 2014, 1410.6185.
[108] Jens Rodmann,et al. The Wide-Field Imager for Solar Probe Plus (WISPR) , 2014 .
[109] X. Bai,et al. Improved magnetogram calibration of Solar Magnetic Field Telescope and its comparison with the Helioseismic and Magnetic Imager , 2014 .
[110] O. Olmedo,et al. NEW INSIGHTS INTO THE PHYSICAL NATURE OF CORONAL MASS EJECTIONS AND ASSOCIATED SHOCK WAVES WITHIN THE FRAMEWORK OF THE THREE-DIMENSIONAL STRUCTURE , 2014 .
[111] SINGLE-POINT INVERSION OF THE CORONAL MAGNETIC FIELD , 2014 .
[112] S. Poedts,et al. Simulating AIA observations of a flux rope ejection , 2014, 1407.8397.
[113] S. Lepri,et al. CHARGE STATE EVOLUTION IN THE SOLAR WIND. III. MODEL COMPARISON WITH OBSERVATIONS , 2014 .
[114] Jesper Schou,et al. Helioseismology with Solar Orbiter , 2014, 1406.5435.
[115] E. Priest,et al. The solar cycle variation of topological structures in the global solar corona , 2014, 1406.5333.
[116] A. B. Galvin,et al. CONNECTING SPEEDS, DIRECTIONS AND ARRIVAL TIMES OF 22 CORONAL MASS EJECTIONS FROM THE SUN TO 1 AU , 2014, 1404.3579.
[117] S. Wu,et al. NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF A CORONAL MAGNETIC FLUX ROPE SUPPORTING A LARGE-SCALE SOLAR FILAMENT FROM A PHOTOSPHERIC VECTOR MAGNETOGRAM , 2014, 1403.7807.
[118] M. Ben‐Nun,et al. A Multi-Observatory Inter-Comparison of Line-of-Sight Synoptic Solar Magnetograms , 2014 .
[119] M. Cheung,et al. NUMERICAL SIMULATIONS OF ACTIVE REGION SCALE FLUX EMERGENCE: FROM SPOT FORMATION TO DECAY , 2014, 1402.4703.
[120] D. Mackay,et al. Simulating the formation of a sigmoidal flux rope in AR10977 from SOHO/MDI magnetograms , 2014 .
[121] M. Wheatland,et al. USING CORONAL LOOPS TO RECONSTRUCT THE MAGNETIC FIELD OF AN ACTIVE REGION BEFORE AND AFTER A MAJOR FLARE , 2013, 1312.5389.
[122] D. Seaton,et al. OBSERVATIONS OF A HYBRID DOUBLE-STREAMER/PSEUDOSTREAMER IN THE SOLAR CORONA , 2013, 1312.3153.
[123] A. Vourlidas,et al. Three-Dimensional Evolution of Flux-Rope CMEs and Its Relation to the Local Orientation of the Heliospheric Current Sheet , 2013, 1312.0458.
[124] T. Gombosi,et al. ALFVÉN WAVE SOLAR MODEL (AWSoM): CORONAL HEATING , 2013, 1311.4093.
[125] J. C. del Toro Iniesta,et al. The Solar Orbiter mission , 2020, Optics & Photonics - Optical Engineering + Applications.
[126] J. Linker,et al. A METHOD FOR EMBEDDING CIRCULAR FORCE-FREE FLUX ROPES IN POTENTIAL MAGNETIC FIELDS , 2013 .
[127] A. Vourlidas,et al. INNER HELIOSPHERIC EVOLUTION OF A “STEALTH” CME DERIVED FROM MULTI-VIEW IMAGING AND MULTIPOINT IN SITU OBSERVATIONS. I. PROPAGATION TO 1 AU , 2013, 1311.6895.
[128] R. Trines,et al. ESTABLISHING A STEREOSCOPIC TECHNIQUE FOR DETERMINING THE KINEMATIC PROPERTIES OF SOLAR WIND TRANSIENTS BASED ON A GENERALIZED SELF-SIMILARLY EXPANDING CIRCULAR GEOMETRY , 2013 .
[129] D. Hathaway,et al. PREDICTING THE SUN'S POLAR MAGNETIC FIELDS WITH A SURFACE FLUX TRANSPORT MODEL , 2013, 1311.0844.
[130] S. Poedts,et al. Effect of gravitational stratification on the propagation of a CME , 2013, 1310.6960.
[131] A. Vourlidas,et al. Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging , 2013, 1310.6680.
[132] P. MacNeice,et al. Global Solar Free Magnetic Energy and Electric Current Density Distribution of Carrington Rotation 2124 , 2013, 1310.5790.
[133] G. Zanna. The multi-thermal emission in solar active regions , 2013 .
[134] A. Yeates,et al. Kinematic active region formation in a three-dimensional solar dynamo model , 2013, 1309.6342.
[135] Haosheng Lin,et al. VECTOR TOMOGRAPHY FOR THE CORONAL MAGNETIC FIELD. II. HANLE EFFECT MEASUREMENTS , 2013 .
[136] S. Suess,et al. The May 1997 SOHO‐Ulysses quadrature , 2013 .
[137] S. Poedts,et al. Magnetohydrodynamic simulations of the ejection of a magnetic flux rope , 2013 .
[138] D. Mccomas,et al. TRACKING CORONAL FEATURES FROM THE LOW CORONA TO EARTH: A QUANTITATIVE ANALYSIS OF THE 2008 DECEMBER 12 CORONAL MASS EJECTION , 2013 .
[139] D. Berdichevsky. On Fields and Mass Constraints for the Uniform Propagation of Magnetic-Flux Ropes Undergoing Isotropic Expansion , 2013 .
[140] Y. Fan,et al. Polarimetric Properties of Flux Ropes and Sheared Arcades in Coronal Prominence Cavities , 2013, 1304.7594.
[141] B. Forland,et al. THE MAGNETIC STRUCTURE OF SOLAR PROMINENCE CAVITIES: NEW OBSERVATIONAL SIGNATURE REVEALED BY CORONAL MAGNETOMETRY , 2013, 1304.7388.
[142] Z. Du,et al. FORCED FIELD EXTRAPOLATION: TESTING A MAGNETOHYDRODYNAMIC (MHD) RELAXATION METHOD WITH A FLUX-ROPE EMERGENCE MODEL , 2013 .
[143] Alternating Twist Along an Erupting Prominence , 2013 .
[144] H. Mason,et al. CHIANTI—AN ATOMIC DATABASE FOR EMISSION LINES. XIII. SOFT X-RAY IMPROVEMENTS AND OTHER CHANGES , 2013 .
[145] M. Aschwanden. NONLINEAR FORCE-FREE MAGNETIC FIELD FITTING TO CORONAL LOOPS WITH AND WITHOUT STEREOSCOPY , 2012, 1212.2996.
[146] S. Mancuso,et al. Super- and sub-critical regions in shocks driven by radio-loud and radio-quiet CMEs , 2012, Journal of advanced research.
[147] A. Vourlidas,et al. Three-Dimensional Evolution of Erupted Flux Ropes from the Sun (2 – 20 R⊙) to 1 AU , 2012, 1211.2108.
[148] R. Seguin,et al. The Interface Region Imaging Spectrograph (IRIS) , 2012, 1401.2491.
[149] F. Heidecke,et al. The 1.5 meter solar telescope GREGOR , 2012 .
[150] F. Auchère,et al. ON THE ACCURACY OF THE DIFFERENTIAL EMISSION MEASURE DIAGNOSTICS OF SOLAR PLASMAS. APPLICATION TO SDO/AIA. II. MULTITHERMAL PLASMAS , 2012, 1210.2304.
[151] S. Wu,et al. A DATA-DRIVEN MODEL FOR THE GLOBAL CORONAL EVOLUTION , 2012 .
[152] C. Russell,et al. Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation , 2012 .
[153] T. Howard,et al. WHITE-LIGHT OBSERVATIONS OF SOLAR WIND TRANSIENTS AND COMPARISON WITH AUXILIARY DATA SETS , 2012 .
[154] A. Vourlidas,et al. How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs , 2012, 1207.1599.
[155] B. Anderson,et al. Remote and in situ observations of an unusual Earth‐directed coronal mass ejection from multiple viewpoints , 2012 .
[156] The Graduate University for Advanced Studies,et al. POLAR FIELD REVERSAL OBSERVATIONS WITH HINODE , 2012, 1205.2154.
[157] V. Osherovich,et al. Solar Wind Quasi-invariant for Slow and Fast Magnetic Clouds , 2012 .
[158] M. Wheatland,et al. GUIDING NONLINEAR FORCE-FREE MODELING USING CORONAL OBSERVATIONS: FIRST RESULTS USING A QUASI-GRAD–RUBIN SCHEME , 2012, 1202.5420.
[159] E. Kontar,et al. Differential Emission Measures from the Regularized Inversion of Hinode and SDO data , 2012, 1201.2642.
[160] M. C. Toribio,et al. LOFAR: The LOw-Frequency ARray , 2013, 1305.3550.
[161] W. Pesnell,et al. The Solar Dynamics Observatory (SDO) , 2012 .
[162] J. T. Hoeksema,et al. The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO) , 2012 .
[163] J. Clem,et al. THREE-DIMENSIONAL WAVY HELIOSPHERIC CURRENT SHEET DRIFTS , 2012 .
[164] M. Wheatland,et al. The Free Energy of NOAA Solar Active Region AR 11029 , 2011, 1110.4418.
[165] M. Velli,et al. Origins of Rolling, Twisting, and Non-radial Propagation of Eruptive Solar Events , 2011, 1211.1376.
[166] K. Kusano,et al. TWIST AND CONNECTIVITY OF MAGNETIC FIELD LINES IN THE SOLAR ACTIVE REGION NOAA 10930 , 2011 .
[167] Emilia Kilpua,et al. Interplanetary coronal mass ejections in the near-Earth solar wind during the minimum periods following solar cycles 22 and 23 , 2011 .
[168] A. Rouillard. Relating white light and in situ observations of coronal mass ejections: A review , 2011 .
[169] P. Liewer,et al. Stereoscopic Analysis of STEREO/SECCHI Data for CME Trajectory Determination , 2011 .
[170] R. Pinto,et al. COUPLING THE SOLAR DYNAMO AND THE CORONA: WIND PROPERTIES, MASS, AND MOMENTUM LOSSES DURING AN ACTIVITY CYCLE , 2011, 1106.0882.
[171] A. Vourlidas,et al. THE FIRST OBSERVATION OF A RAPIDLY ROTATING CORONAL MASS EJECTION IN THE MIDDLE CORONA , 2011 .
[172] F. Auchère,et al. TomograPy: A Fast, Instrument-Independent, Solar Tomography Software , 2011 .
[173] M. Aschwanden,et al. SOLAR CORONA LOOP STUDIES WITH THE ATMOSPHERIC IMAGING ASSEMBLY. I. CROSS-SECTIONAL TEMPERATURE STRUCTURE , 2011, 1103.0228.
[174] D. Mackay,et al. MODELING THE DISPERSAL OF AN ACTIVE REGION: QUANTIFYING ENERGY INPUT INTO THE CORONA , 2011, 1102.5296.
[175] R. Frazin,et al. The WHI Corona from Differential Emission Measure Tomography , 2011 .
[176] M. Georgoulis,et al. Nonlinear Force-Free Reconstruction of the Global Solar Magnetic Field: Methodology , 2010, 1011.5356.
[177] V. S. Titov,et al. MAGNETIC TOPOLOGY OF CORONAL HOLE LINKAGES , 2010, 1011.0009.
[178] Clive G. Page,et al. Definition of the Flexible Image Transport System (FITS), version 3.0 , 2010 .
[179] N. Lugaz,et al. Accuracy and Limitations of Fitting and Stereoscopic Methods to Determine the Direction of Coronal Mass Ejections from Heliospheric Imagers Observations , 2010, 1010.1949.
[180] J. Luhmann,et al. Sun to 1 AU propagation and evolution of a slow streamer-blowout coronal mass ejection , 2010 .
[181] D. Mackay,et al. A nonpotential model for the Sun's open magnetic flux , 2010, 1006.4011.
[182] Richard A. Frazin,et al. Three-Dimensional Electron Density from Tomographic Analysis of LASCO-C2 Images of the K-Corona Total Brightness , 2010 .
[183] Jackie A. Davies,et al. OBSERVATIONAL EVIDENCE OF A CORONAL MASS EJECTION DISTORTION DIRECTLY ATTRIBUTABLE TO A STRUCTURED SOLAR WIND , 2010 .
[184] Frank Hill,et al. EVIDENCE THAT TEMPORAL CHANGES IN SOLAR SUBSURFACE HELICITY PRECEDE ACTIVE REGION FLARING , 2010 .
[185] Baptiste Cecconi,et al. AMDA, Automated Multi-Dataset Analysis: A Web-Based Service Provided by the CDPP , 2010 .
[186] Research,et al. COMPARISON OF A GLOBAL MAGNETIC EVOLUTION MODEL WITH OBSERVATIONS OF CORONAL MASS EJECTIONS , 2009, 0912.3347.
[187] S. Solanki,et al. Nonlinear force-free modelling: influence of inaccuracies in the measured magnetic vector , 2009, 0912.3002.
[188] U. Michigan,et al. TOWARD A REALISTIC THERMODYNAMIC MAGNETOHYDRODYNAMIC MODEL OF THE GLOBAL SOLAR CORONA , 2009, 0912.2647.
[189] R. Howard,et al. THE THREE-DIMENSIONAL MORPHOLOGY OF A COROTATING INTERACTION REGION IN THE INNER HELIOSPHERE , 2010 .
[190] P. Démoulin,et al. Magnetic cloud models with bent and oblate cross-section boundaries , 2009 .
[191] V. Kashyap,et al. SOME LIKE IT HOT: CORONAL HEATING OBSERVATIONS FROM HINODE X-RAY TELESCOPE AND RHESSI , 2009 .
[192] Austria,et al. LINKING REMOTE IMAGERY OF A CORONAL MASS EJECTION TO ITS IN SITU SIGNATURES AT 1 AU , 2009, 0910.1188.
[193] Thomas R. Metcalf,et al. Resolving the 180° Ambiguity in Solar Vector Magnetic Field Data: Evaluating the Effects of Noise, Spatial Resolution, and Method Assumptions , 2009 .
[194] N. Lugaz,et al. Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere - application to CME-CME interaction , 2009, 0909.0534.
[195] Joseph M. Davila,et al. On the Tomographic Reconstruction of the 3D Electron Density for the Solar Corona from STEREO COR1 Data , 2009 .
[196] M. Lockwood,et al. A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft , 2009 .
[197] R. Howard,et al. Reconstructing the 3D Morphology of the 17 May 2008 CME , 2009 .
[198] M. Aschwanden,et al. FIRST THREE-DIMENSIONAL RECONSTRUCTIONS OF CORONAL LOOPS WITH THE STEREO A+B SPACECRAFT. III. INSTANT STEREOSCOPIC TOMOGRAPHY OF ACTIVE REGIONS , 2009 .
[199] A. Vourlidas,et al. Forward Modeling of Coronal Mass Ejections Using STEREO/SECCHI Data , 2009 .
[200] W. Thompson,et al. 3D triangulation of a Sun-grazing comet , 2009 .
[201] Haiyang Li,et al. EVIDENCE FOR A PRE-ERUPTIVE TWISTED FLUX ROPE USING THE THEMIS VECTOR MAGNETOGRAPH , 2009 .
[202] F. Kamalabadi,et al. 3D Temperatures and Densities of the Solar Corona via Multi-Spacecraft EUV Tomography: Analysis of Prominence Cavities , 2009 .
[203] Carolus J. Schrijver,et al. A CRITICAL ASSESSMENT OF NONLINEAR FORCE-FREE FIELD MODELING OF THE SOLAR CORONA FOR ACTIVE REGION 10953 , 2009, 0902.1007.
[204] J. Davies,et al. A synoptic view of solar transient evolution in the inner heliosphere using the Heliospheric Imagers on STEREO , 2009 .
[205] M. Shimojo,et al. The Magnetic Landscape of the Sun's Polar Region , 2008, 0807.4631.
[206] M. Lockwood,et al. First imaging of corotating interaction regions using the STEREO spacecraft , 2008 .
[207] E. Christian,et al. The STEREO Mission: An Introduction , 2008 .
[208] L. Burlaga,et al. Heliospheric Images of the Solar Wind at Earth , 2008 .
[209] T. Rodet,et al. A Time-Evolving 3D Method Dedicated to the Reconstruction of Solar Plumes and Results Using Extreme Ultraviolet Data , 2008, 0802.0113.
[210] R. Casini,et al. An Instrument to Measure Coronal Emission Line Polarization , 2008 .
[211] D. Mackay,et al. Modelling the Global Solar Corona II: Coronal Evolution and Filament Chirality Comparison , 2007, 0711.2887.
[212] J. Owens,et al. The Solar Optical Telescope for the Hinode Mission: An Overview , 2007, 0711.1715.
[213] J. Linker,et al. MULTISPECTRAL EMISSION OF THE SUN DURING THE FIRST WHOLE SUN MONTH: MAGNETOHYDRODYNAMIC SIMULATIONS , 2008 .
[214] B. Pontieu,et al. Chromospheric Alfvénic Waves Strong Enough to Power the Solar Wind , 2007, Science.
[215] B. Inhester,et al. Optimization approach for the computation of magnetohydrostatic coronal equilibria in spherical geometry , 2007, 0801.2916.
[216] D. Webb,et al. V arc interplanetary coronal mass ejections observed with the Solar Mass Ejection Imager , 2007 .
[217] D. Mackay,et al. Modelling the Global Solar Corona: Filament Chirality Observations and Surface Simulations , 2007, 0707.3256.
[218] S. Krucker,et al. Solar Flare Electron Spectra at the Sun and near the Earth , 2007 .
[219] P. Démoulin,et al. Progressive Transformation of a Flux Rope to an ICME , 2007, 0706.2889.
[220] M. Schuessler,et al. A solar surface dynamo , 2007, astro-ph/0702681.
[221] Y.-M. Wang,et al. Coronal Pseudostreamers , 2007 .
[222] M. Owens. Magnetic cloud distortion resulting from propagation through a structured solar wind: Models and observations , 2006 .
[223] R. Casini,et al. Spectral Lines for Polarization Measurements of the Coronal Magnetic Field. IV. Stokes Signals in Current-carrying Fields , 2006 .
[224] T. Neukirch,et al. An optimization principle for the computation of MHD equilibria in the solar corona , 2006, astro-ph/0612625.
[225] G. A. Gary,et al. An Overview of Existing Algorithms for Resolving the 180° Ambiguity in Vector Magnetic Fields: Quantitative Tests with Synthetic Data , 2006 .
[226] A. Vourlidas,et al. The Proper Treatment of Coronal Mass Ejection Brightness: A New Methodology and Implications for Observations , 2006 .
[227] Roger K. Ulrich,et al. Carrington Coordinates and Solar Maps , 2006 .
[228] D. Mackay,et al. Models of the Large-Scale Corona. I. Formation, Evolution, and Liftoff of Magnetic Flux Ropes , 2006 .
[229] J. Aly,et al. Well posed reconstruction of the solar coronal magnetic field , 2006 .
[230] C. Wehrli. Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center , 2006 .
[231] International Scientific Conference on Chromospheric and Coronal Magnetic Fields , 2005 .
[232] P. Lamy,et al. On the 3-dimensional structure of the streamer belt of the solar corona , 2005 .
[233] F. Kamalabadi,et al. On the Use of Total Brightness Measurements for Tomography of the Solar Corona , 2005 .
[234] F. Kamalabadi,et al. Rotational Tomography For 3d Reconstruction Of The White-Light And Euv Corona In The Post-Soho Era , 2005 .
[235] R. Keppens,et al. Extrapolation of a nonlinear force-free field containing a highly twisted magnetic loop , 2005 .
[236] F. Auchère. Effect of the H I Lyα Chromospheric Flux Anisotropy on the Total Intensity of the Resonantly Scattered Coronal Radiation , 2005 .
[237] T. Wiegelmann. Optimization code with weighting function for the reconstruction of coronal magnetic fields , 2008, 0802.0124.
[238] E. Benevolenskaya. Polar magnetic flux on the Sun in 1996–2003 from SOHO/MDI data , 2004 .
[239] Joseph B. Gurman,et al. The Virtual Solar Observatory: status and initial operational experience , 2004, SPIE Astronomical Telescopes + Instrumentation.
[240] A. V. Ballegooijen,et al. Observations and Modeling of a Filament on the Sun , 2004 .
[241] J. Kuhn,et al. Coronal Magnetic Field Measurements , 2004 .
[242] P. Riley,et al. Kinematic Treatment of Coronal Mass Ejection Evolution in the Solar Wind , 2004 .
[243] C. Schrijver,et al. Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME , 2003 .
[244] S. Suess,et al. Temporal Evolution of a Streamer Complex: Coronal and in Situ Plasma Parameters , 2003 .
[245] Stephen L. Keil,et al. Innovative Telescopes and Instrumentation for Solar Astrophysics , 2003 .
[246] C. Schrijver,et al. Photospheric and heliospheric magnetic fields , 2003 .
[247] N. Raouafi,et al. Linear polarization of the O VI λ l031.92 coronal line. II. Constraints on the magnetic field and the solar wind velocity field vectors in the coronal polar holes , 2002 .
[248] N. Raouafi. Stokes parameters of resonance lines scattered by a moving, magnetic medium - Theory of the two-level atom , 2002 .
[249] M. Hidalgo,et al. Elliptical cross‐section model for the magnetic topology of magnetic clouds , 2002 .
[250] Michael W. Marcellin,et al. JPEG2000 - image compression fundamentals, standards and practice , 2002, The Kluwer International Series in Engineering and Computer Science.
[251] Jeffrey R. Hall,et al. Determination of three‐dimensional structure of coronal streamers and relationship to the solar magnetic field , 2001 .
[252] A. Kosovichev,et al. Detection of High-Latitude Waves of Solar Coronal Activity in Extreme-Ultraviolet Data from the Solar and Heliospheric Observatory EUV Imaging Telescope , 2001 .
[253] A. Vourlidas,et al. Deriving the Electron Density of the Solar Corona from the Inversion of Total Brightness Measurements , 2001 .
[254] C. J. Wolfson,et al. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) , 2000, SPIE Optics + Photonics.
[255] Steven Tomczyk,et al. A New Precise Measurement of the Coronal Magnetic Field Strength , 2000 .
[256] J. Worden,et al. An Evolving Synoptic Magnetic Flux map and Implications for the Distribution of Photospheric Magnetic Flux , 2000 .
[257] N. Rich,et al. Evolution of coronal streamer structure during the rising phase of solar cycle 23 , 2000 .
[258] D. Odstrcil,et al. Distortion of the interplanetary magnetic field by three‐dimensional propagation of coronal mass ejections in a structured solar wind , 1999 .
[259] R. Howard,et al. Continuous tracking of coronal outflows : Two kinds of coronal mass ejections , 1999 .
[260] R. Casini,et al. Spectral Lines for Polarization Measurements of the Coronal Magnetic Field. II. Consistent Treatment of the Stokes Vector forMagnetic-Dipole Transitions , 1999 .
[261] R. Howard,et al. LASCO and EIT Observations of Helical Structure in Coronal Mass Ejections , 1999 .
[262] D. Biesecker,et al. Solar minimum streamer densities and temperatures using Whole Sun Month coordinated data sets , 1999 .
[263] D. Schnack,et al. Magnetohydrodynamic modeling of the global solar corona , 1999 .
[264] M. Karovska,et al. Comparison of Two Coronal Mass Ejections Observed by EIT and LASCO with a Model of an Erupting Magnetic Flux Rope , 1999 .
[265] S. Fineschi,et al. An Empirical Model of a Polar Coronal Hole at Solar Minimum , 1999 .
[266] Andre Csillaghy,et al. High-Energy Solar Spectroscopic Imager (HESSI) Small Explorer mission for the next (2000) solar maximum , 1998, Optics & Photonics.
[267] S. Freeland,et al. Data Analysis with the SolarSoft System , 1998 .
[268] V. Kashyap,et al. Markov-Chain Monte Carlo Reconstruction of Emission Measure Distributions: Application to Solar Extreme-Ultraviolet Spectra , 1998 .
[269] T. Kosugi,et al. On the relationship between coronal mass ejections and magnetic clouds , 1998 .
[270] Stephen M. White,et al. Coronal Currents, Magnetic Fields, and Heating in a Solar Active Region , 1998 .
[271] Philip G. Judge,et al. Spectral Lines for Polarization Measurements of the Coronal Magnetic Field. I. Theoretical Intensities , 1998 .
[272] R. Howard,et al. The Shape of the Outer Corona during Cycle 21 , 1998 .
[273] J. Davila,et al. Coronal Magnetography of a Solar Active Region Using Coordinated SERTS and VLA Observations , 1997 .
[274] P. Lamy,et al. Origin and Evolution of Coronal Streamer Structure During the 1996 Minimum Activity Phase , 1997 .
[275] Stephen M. White,et al. Radio Observations of Gyroresonance Emission from Coronal Magnetic Fields , 1997 .
[276] S. White,et al. SIGNATURES OF CORONAL CURRENTS IN MICROWAVE IMAGES , 1997 .
[277] Michael S. Wheatland,et al. An Optimization Approach to Reconstructing Force-free Fields , 1997 .
[278] C. Lindsey,et al. Helioseismic Holography , 1997 .
[279] R. K. Ulrich,et al. The Global Oscillation Network Group (GONG) Project , 1996, Science.
[280] C. H. Acton,et al. Ancillary data services of NASA's Navigation and Ancillary Information Facility , 1996 .
[281] Ingrid Mann,et al. The Near-Infrared Coronal Spectrum , 1996 .
[282] V. Domingo,et al. The SOHO mission: An overview , 1995 .
[283] V. Hansteen,et al. Coronal heating, densities, and temperatures and solar wind acceleration , 1995 .
[284] F. Hill,et al. The global oscillation network group site survey , 1994 .
[285] Shadia Rifai Habbal,et al. On the derivation of empirical limits on the helium abundance in coronal holes below 1.5 solar radius , 1994 .
[286] M. Freeman,et al. A study of an expanding interplanetary magnetic cloud and its interaction with the Earth's magnetosphere: The interplanetary aspect , 1993 .
[287] B. Low. Three-dimensional structures of magnetostatic atmospheres. IV: Magnetic structures over a solar active region , 1992 .
[288] E. Parker. Nanoflares and the solar X-ray corona , 1988 .
[289] G. Withbroe. The temperature structure, mass, and energy flow in the corona and inner solar wind , 1988 .
[290] G. Noci,et al. Solar wind diagnostics from Doppler-enhanced scattering , 1987 .
[291] J. T. Hoeksema,et al. The structure of the heliospheric current sheet: 1978–1982 , 1983 .
[292] S. Sahal-Bréchot,et al. The Hanle effect of the coronal Lα line of hydrogen: Theoretical investigation , 1982 .
[293] C. Querfeld. The formation and interpretation of the Fe XIII 10747 A coronal emission line , 1982 .
[294] George L. Withbroe,et al. Probing the solar wind acceleration region using spectroscopic techniques , 1982 .
[295] Eric Ronald Priest,et al. Solar magneto-hydrodynamics , 1982 .
[296] F. Mariani,et al. Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP-8 observations , 1981 .
[297] T. Holzer,et al. Energy addition in the solar wind , 1980 .
[298] T. Holzer,et al. Conductive solar wind models in rapidly diverging flow geometries , 1980 .
[299] C. Hyder,et al. Hα Doppler brightening and Lyman-α Doppler dimming in moving Hα prominences , 1970 .
[300] Donald E. Billings,et al. A Guide to the Solar Corona , 2013 .
[301] G. Righini,et al. Astrophysics and space science , 1966 .
[302] S. Pottasch. On the Chemical Composition of the Solar Corona , 1964 .
[303] Wilhelm Hanle,et al. Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz , 1924 .