Implementing co-evolution and parallelization in a multi-objective particle swarm optimizer

A new multi-objective optimizer based on swarm intelligence is presented in this article. A distinctive feature of the proposed particle swarm optimizer (PSO) is the utilization of only social components, which are based on global guides, for the exploration and exploitation of the search space. Mutation and elitism are also employed in order to improve the effectiveness of the PSO. The algorithmic parameters are controlled via an on-line adaptive scheme. The algorithm is further developed to co-evolve multiple swarms. The investigation of various multi-objective optimization problems reveals that the proposed PSO is able to converge fast and in a robust manner towards the true Pareto-optimal front. Comparisons with results obtained from other multi-objective optimizers are presented. A parametric investigation is performed in order to exploit the potential of the proposed co-evolutionary algorithm for parallelization. The results obtained from a hydrofoil design optimization problem demonstrate near-linear speedup and high parallel efficiency.

[1]  I. H. Abbott,et al.  Theory of Wing Sections , 1959 .

[2]  J. Hess,et al.  Calculation of potential flow about arbitrary bodies , 1967 .

[3]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[4]  George Karypis,et al.  Introduction to Parallel Computing , 1994 .

[5]  A. Osyczka,et al.  A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm , 1995 .

[6]  R. W. Dobbins,et al.  Computational intelligence PC tools , 1996 .

[7]  Hajime Kita,et al.  Multi-Objective Optimization by Means of the Thermodynamical Genetic Algorithm , 1996, PPSN.

[8]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[9]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[10]  Dirk Thierens,et al.  A case study of a multiobjective recombinative genetic algorithm with coevolutionary sharing , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[11]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[12]  Ian C. Parmee,et al.  Preliminary airframe design using co-evolutionary multiobjective genetic algorithms , 1999 .

[13]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[14]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[15]  Kalyanmoy Deb,et al.  Mechanical Component Design for Multiple Objectives Using Elitist Non-dominated Sorting GA , 2000, PPSN.

[16]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[17]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[18]  Kalyanmoy Deb,et al.  Constrained Test Problems for Multi-objective Evolutionary Optimization , 2001, EMO.

[19]  Tapabrata Ray,et al.  A Swarm Metaphor for Multiobjective Design Optimization , 2002 .

[20]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[21]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[22]  Gary B. Lamont,et al.  Considerations in engineering parallel multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[23]  Xiaodong Li,et al.  A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization , 2003, GECCO.

[24]  Yang Yang,et al.  A distributed cooperative coevolutionary algorithm for multiobjective optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[25]  Jürgen Teich,et al.  Covering Pareto-optimal fronts by subswarms in multi-objective particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[26]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[27]  Kalyanmoy Deb,et al.  Parallelizing multi-objective evolutionary algorithms: cone separation , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[28]  Xiaodong Li,et al.  A Cooperative Coevolutionary Multiobjective Algorithm Using Non-dominated Sorting , 2004, GECCO.

[29]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[30]  Prospero C. Naval,et al.  An effective use of crowding distance in multiobjective particle swarm optimization , 2005, GECCO '05.

[31]  MargaritaReyes-SierraandCarlosA. CoelloCoello On-line Adaptation in Multi-Objecti ve Particle Swarm Optimization , 2006 .

[32]  Carlos A. Coello Coello,et al.  EMOPSO: A Multi-Objective Particle Swarm Optimizer with Emphasis on Efficiency , 2007, EMO.

[33]  Carlos A. Coello Coello,et al.  Towards a More Efficient Multi-Objective Particle Swarm Optimizer , 2008 .

[34]  Barbara Chapman,et al.  Using OpenMP - portable shared memory parallel programming , 2007, Scientific and engineering computation.

[35]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[36]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[37]  Kay Chen Tan,et al.  A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design , 2010, Eur. J. Oper. Res..