Uniting Local and Global Output Feedback Controllers

We consider control systems for which we know two stabilizing output feedback controllers. One is globally asymptotically stabilizing, while the other one is only locally asymptotically stabilizing. We look for a composite output feedback control law that is equal to the local feedback on a neighborhood of the origin and that is globally asymptotically stabilizing. Since we want some robustness with respect to measurement noise, actuator errors, and external disturbances, we need to consider hybrid output feedback controllers. Under an input-output-to-state stability assumption, we exhibit a solution of this uniting problem by means of a dynamic hybrid output feedback controller. Then, we particularize our study to linear control systems with saturation at the input for which we know two stabilizing output feedback controllers. One is a nonlinear globally asymptotically stabilizing controller, while the other one is a high-performance linear-only locally asymptotically stabilizing controller. We specify numerically tractable conditions to solve this uniting problem. Finally, we illustrate our main results by means of numerical examples.

[1]  Jean-Pierre Aubin,et al.  Impulse differential inclusions: a viability approach to hybrid systems , 2002, IEEE Trans. Autom. Control..

[2]  Denis V. Efimov Microsoft Word - UNITING_GLOB_and_LOC_CONTR_ IFAC_final , 2005 .

[3]  Riccardo Marino,et al.  A class of globally output feedback stabilizable nonlinear non-minimum phase systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[4]  Matthew C. Turner,et al.  Antiwindup for stable linear systems with input saturation: an LMI-based synthesis , 2003, IEEE Trans. Autom. Control..

[5]  Christophe Prieur Uniting Local and Global Controllers with Robustness to Vanishing Noise , 2001, Math. Control. Signals Syst..

[6]  Yu. S. Ledyaev,et al.  A Lyapunov characterization of robust stabilization , 1999 .

[7]  Sophie Tarbouriech,et al.  Antiwindup design with guaranteed regions of stability: an LMI-based approach , 2005, IEEE Transactions on Automatic Control.

[8]  Eduardo Sontag Input to State Stability: Basic Concepts and Results , 2008 .

[9]  Tingshu Hu,et al.  Control Systems with Actuator Saturation: Analysis and Design , 2001 .

[10]  Guido Herrmann,et al.  Advanced Strategies in Control Systems with Input and Output Constraints , 2006 .

[11]  P. Olver Nonlinear Systems , 2013 .

[12]  Francis H. Clarke,et al.  Feedback Stabilization and Lyapunov Functions , 2000, SIAM J. Control. Optim..

[13]  Alessandro Astolfi,et al.  Norm estimators and global output feedback stabilization of nonlinear systems with ISS inverse dynamics , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[14]  Miroslav Krstic,et al.  An Antiwindup Approach to Enlarging Domain of Attraction for Linear Systems Subject to Actuator Saturation , 2002 .

[15]  Luca Zaccarian,et al.  Nonlinear scheduled anti-windup design for linear systems , 2004, IEEE Transactions on Automatic Control.

[16]  Eduardo D. Sontag,et al.  Input-Output-to-State Stability , 2001, SIAM J. Control. Optim..

[17]  Luca Zaccarian,et al.  Stability and Performance for Saturated Systems via Quadratic and Nonquadratic Lyapunov Functions , 2006, IEEE Transactions on Automatic Control.

[18]  J. Hespanha,et al.  Hybrid systems: Generalized solutions and robust stability , 2004 .

[19]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[20]  Stefano Battilotti Sufficient conditions for global output regulation of nonlinear interconnected systems , 1999, Autom..

[21]  Sophie Tarbouriech,et al.  Advanced strategies in control systems with input and output constraints , 2007 .

[22]  Yu. S. Ledyaev,et al.  Asymptotic Stability and Smooth Lyapunov Functions , 1998 .

[23]  L. Praly,et al.  Uniting local and global controllers , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[24]  Richard M. Murray,et al.  Uniting local and global controllers for the Caltech ducted fan , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[25]  Vincent Andrieu,et al.  A unifying point of view on output feedback designs for global asymptotic stabilization , 2009, Autom..

[26]  Rafal Goebel,et al.  Solutions to hybrid inclusions via set and graphical convergence with stability theory applications , 2006, Autom..

[27]  David Angeli,et al.  A characterization of integral input-to-state stability , 2000, IEEE Trans. Autom. Control..

[28]  Eduardo Sontag Clocks and insensitivity to small measurement errors , 1999 .

[29]  Tingshu Hu,et al.  Control Systems with Actuator Saturation: Analysis and Design , 2001 .

[30]  Rafal Goebel,et al.  Hybrid Feedback Control and Robust Stabilization of Nonlinear Systems , 2007, IEEE Transactions on Automatic Control.

[31]  Manfred Morari,et al.  Multivariable anti-windup controller synthesis using linear matrix inequalities , 2001, Autom..

[32]  Karl Henrik Johansson,et al.  Dynamical properties of hybrid automata , 2003, IEEE Trans. Autom. Control..

[33]  Christophe Prieur,et al.  A tentative direct Lyapunov design of output feedbacks , 2004 .

[34]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .