Developing a site index model for P. Pinaster stands in NW Spain by combining bi-temporal ALS data and environmental data

Abstract Site index (SI) is a common measure of forest site productivity, serving as a valuable baseline for forest management. The main objective of this study was to develop a SI model for Pinus pinaster Ait. in north-west Spain by combining bi–temporal, low–density airborne laser scanning (ALS) data (acquired in the periods 2009–2011 and 2015–2017) with climatic, edaphic and physiographical data. Site productivity, assessed by site quality curves, was modelled using an age-independent difference equation method based on ALS metrics and environmental variables. For the model development process, we used data from 156 sample plots in pure and even-aged P. pinaster stands distributed throughout Galicia (NW Spain) and measured in the Spanish National Forest Inventory (SNFI). The generalized algebraic difference approach (GADA) formulation was tested by using two different base equations for modelling the dominant height growth (ΔH) from ALS variables. The GADA formulation derived from the Bertalanffy’s base model produced the best estimates of dominant height (H) for P. pinaster stands in Galicia. Use of the proposed model to estimate ΔH for a new pine stand requires two ALS data sets for estimating site-specific (local) parameters. To enable use of the model when such information is not available, the relationship between the values of the site-specific parameter and environmental variables was described using Multivariate Adaptive Regression Splines (MARS). Use of the MARS equation enabled us to develop spatially-explicit predictive maps of the site-specific parameter values, which can be used together with the GADA model to derive ΔH curves and SI estimates for P. pinaster stands in the whole study region.

[1]  J. Stape,et al.  Site index estimation for clonal eucalypt plantations in Brazil: A modeling approach refined by environmental variables , 2020, Forest Ecology and Management.

[2]  E. Næsset Estimating timber volume of forest stands using airborne laser scanner data , 1997 .

[3]  O. Aguirre-Calderón,et al.  A dominant height growth and site index model for Pinus pseudostrobus Lindl. in northeastern Mexico , 2013 .

[4]  J. G. González,et al.  Ecoregional site index models for Pinus pinaster in Galicia (northwestern Spain) , 2005 .

[5]  Cédric Véga,et al.  Height growth reconstruction of a boreal forest canopy over a period of 58 years using a combination of photogrammetric and lidar models , 2008 .

[6]  S. Condés,et al.  An empirical mixed model to quantify climate influence on the growth of Pinus halepensis Mill. stands in South-Eastern Spain , 2012 .

[7]  Oscar García,et al.  Evaluating forest Growth Models , 1997 .

[8]  J. Stape,et al.  Meteorological seasonality affecting individual tree growth in forest plantations in Brazil , 2016 .

[9]  Ulises Diéguez-Aranda,et al.  Dynamic growth model for Scots pine (Pinus sylvestris L.) plantations in Galicia (north-western Spain) , 2006 .

[10]  M. Ninyerola,et al.  Mapping a topographic global solar radiation model implemented in a GIS and refined with ground data , 2008 .

[11]  K. Rennolls,et al.  Timber Management-A Quantitative Approach. , 1984 .

[12]  M. Ninyerola,et al.  Twentieth century increase of Scots pine radial growth in NE Spain shows strong climate interactions , 2008 .

[13]  J. Kush,et al.  Dynamic site index equation for thinned stands of even-aged natural longleaf pine. , 2010 .

[14]  Adrián Pascual,et al.  The Role of Improved Ground Positioning and Forest Structural Complexity When Performing Forest Inventory Using Airborne Laser Scanning , 2020, Remote. Sens..

[15]  Chris J. Cieszewski,et al.  Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes. , 2000 .

[16]  U. Diéguez-Aranda,et al.  A growth model for Pinus radiata D. Don stands in north-western Spain , 2007, Annals of Forest Science.

[17]  L. Iverson,et al.  Competition amplifies drought stress in forests across broad climatic and compositional gradients , 2017 .

[18]  Juha Hyyppä,et al.  Effects of flight altitude on tree height estimation using airborne laser scanning , 2004 .

[19]  W. Bauerle,et al.  Drought impact on forest growth and mortality in the southeast USA: an analysis using Forest Health and Monitoring data. , 2009, Ecological applications : a publication of the Ecological Society of America.

[20]  K. Gadow,et al.  Site quality curves for birch stands in north-western Spain , 2006 .

[21]  Werner A. Kurz,et al.  Modelling the interactions between moisture and nutrients in the control of forest growth , 1990 .

[22]  C. Ballabio,et al.  Mapping topsoil physical properties at European scale using the LUCAS database , 2016 .

[23]  C. W. Thornthwaite,et al.  The Climates of the Earth , 1933 .

[24]  José Antonio Manzanera,et al.  Comparing airborne laser scanning-imagery fusion methods based on geometric accuracy in forested areas , 2011 .

[25]  Nicholas C. Coops,et al.  Augmenting Site Index Estimation with Airborne Laser Scanning Data , 2015 .

[26]  Jerome K. Vanclay,et al.  Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands , 2008 .

[27]  M. Tomé,et al.  Dominant height growth equations including site attributes in the generalized algebraic difference approach , 2008 .

[28]  M. Tomé,et al.  Using low density LiDAR data to map Mediterranean forest characteristics by means of an area-based approach and height threshold analysis , 2016 .

[29]  Iciar Alberdi,et al.  O Inventário Florestal Nacional Espanhol: história, desenvolvimento, desafios e perspectivas , 2017 .

[30]  Vicente S. Monleon,et al.  Challenges to Estimating Tree Height via LiDAR in Closed-Canopy Forests: A Parable from Western Oregon , 2010, Forest Science.

[31]  Klaus von Gadow,et al.  National Forest Inventory and forest observational studies in Spain: Applications to forest modeling , 2014 .

[32]  J. R. Jensen,et al.  Creation of digital terrain models using an adaptive lidar vegetation point removal process , 2002 .

[33]  Alexis Achim,et al.  Removing bias from LiDAR-based estimates of canopy height: Accounting for the effects of pulse density and footprint size , 2017 .

[34]  S. Solberg,et al.  Age-independent site index mapping with repeated single-tree airborne laser scanning , 2019, Scandinavian Journal of Forest Research.

[35]  J. Hyyppä,et al.  Review of methods of small‐footprint airborne laser scanning for extracting forest inventory data in boreal forests , 2008 .

[36]  J. Hyyppä,et al.  Change Detection Techniques for Canopy Height Growth Measurements Using Airborne Laser Scanner Data , 2006 .

[37]  M. Río,et al.  Geographic variation and parameter assessment in generalized algebraic difference site index modelling , 2007 .

[38]  Harold E. Burkhart,et al.  Eucalyptus growth and yield system: Linking individual-tree and stand-level growth models in clonal Eucalypt plantations in Brazil , 2019, Forest Ecology and Management.

[39]  D. Roberts,et al.  Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape , 2004 .

[40]  E. Næsset,et al.  Forestry Applications of Airborne Laser Scanning , 2014, Managing Forest Ecosystems.

[41]  Terje Gobakken,et al.  Direct and indirect site index determination for Norway spruce and Scots pine using bitemporal airborne laser scanner data , 2018, Forest Ecology and Management.

[42]  Robert A. Monserud,et al.  Height Growth and Site Index Curves for Inland Douglas-fir Based on Stem Analysis Data and Forest Habitat Type , 1984 .

[43]  Eduardo González-Ferreiro,et al.  Assessing the attributes of high-density Eucalyptus globulus stands using airborne laser scanner data , 2011 .

[44]  Sergio M. Vicente-Serrano,et al.  Diverse responses of forest growth to drought time‐scales in the Northern Hemisphere , 2014 .

[45]  K. Gadow,et al.  Site index models for Calabrian pine in the central Mediterranean region of Turkey , 2018 .

[46]  Miquel Ninyerola,et al.  A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques , 2000 .

[47]  Chris J. Cieszewski,et al.  Comparing Fixed- and Variable-Base-Age Site Equations Having Single Versus Multiple Asymptotes , 2002 .

[48]  Yang Liu,et al.  Evapotranspiration and favorable growing degree-days are key to tree height growth and ecosystem functioning: Meta-analyses of Pacific Northwest historical data , 2018, Scientific Reports.

[49]  Jarosław Socha,et al.  Assessing the sensitivity of site index models developed using bi-temporal airborne laser scanning data to different top height estimates and grid cell sizes , 2020, Int. J. Appl. Earth Obs. Geoinformation.

[50]  J. McTague,et al.  Modeling dominant height growth of eucalyptus plantations with parameters conditioned to climatic variations , 2016 .

[51]  E. Næsset,et al.  Predicting and mapping site index in operational forest inventories using bitemporal airborne laser scanner data , 2020 .

[52]  Nicholas C. Coops,et al.  Challenges of Multi-Temporal and Multi-Sensor Forest Growth Analyses in a Highly Disturbed Boreal Mixedwood Forests , 2019, Remote. Sens..

[53]  P. Álvarez-Álvarez,et al.  Effects of foliar nutrients and environmental factors on site productivity in Pinus pinaster Ait. stands in Asturias (NW Spain) , 2011, Annals of Forest Science.

[54]  O. E. Sakici,et al.  Dominant height growth and dynamic site index models for Crimean pine in the Kastamonu–Taşköprü region of Turkey , 2017 .

[55]  U. Diéguez-Aranda,et al.  Evaluation of age-independent methods of estimating site index and predicting height growth: a case study for maritime pine in Asturias (NW Spain) , 2014, European Journal of Forest Research.

[56]  Harold E. Burkhart,et al.  Modeling Forest Trees and Stands , 2012, Springer Netherlands.

[57]  M. L. Guillén-Climent,et al.  High resolution forest inventory of pure and mixed stands at regional level combining National Forest Inventory field plots, Landsat, and low density lidar , 2018 .

[58]  M. Tomé,et al.  Age-independent difference equations for modelling tree and stand growth , 2006 .

[59]  J. Friedman Multivariate adaptive regression splines , 1990 .

[60]  Jerome K. Vanclay,et al.  Forest Growth and Yield Modeling , 2011 .

[61]  Sergio M. Vicente-Serrano,et al.  Impacts of droughts on the growth resilience of Northern Hemisphere forests , 2017 .

[62]  Robert L. Bailey,et al.  Base-Age Invariant Polymorphic Site Curves , 1974 .

[63]  Ronald J. Hall,et al.  The uncertainty in conifer plantation growth prediction from multi-temporal lidar datasets , 2008 .

[64]  Luis Ángel Ruiz Fernández,et al.  Analysis of the factors affecting LiDAR DTM accuracy in a steep shrub area , 2011, Int. J. Digit. Earth.

[65]  Nicholas C. Coops,et al.  Enhancing Forest Growth and Yield Predictions with Airborne Laser Scanning Data: Increasing Spatial Detail and Optimizing Yield Curve Selection through Template Matching , 2016 .

[66]  Miquel Ninyerola,et al.  Objective air temperature mapping for the Iberian Peninsula using spatial interpolation and GIS , 2007 .

[67]  L. Bertalanffy Quantitative Laws in Metabolism and Growth , 1957 .

[68]  Margarida Tomé,et al.  Modeling dominant height growth of maritime pine in Portugal using GADA methodology with parameters depending on soil and climate variables , 2011, Annals of Forest Science.

[69]  Mariusz Ciesielski,et al.  Modelling top height growth and site index using repeated laser scanning data , 2017 .

[70]  U. Diéguez-Aranda,et al.  Exploring the use of learning techniques for relating the site index of radiata pine stands with climate, soil and physiography , 2020 .

[71]  Juan Bellot,et al.  GOTILWA: An Integrated Model of Water Dynamics and Forest Growth , 1999 .

[72]  Nicholas C. Coops,et al.  Combining Multi-Date Airborne Laser Scanning and Digital Aerial Photogrammetric Data for Forest Growth and Yield Modelling , 2018, Remote. Sens..