Analysis of a spatially extended nonlinear SEIS epidemic model with distinct incidence for exposed and infectives

We present a nonlinear SEIS epidemic model which incorporates distinct incidence rates for the exposed and the infected populations. The model is analyzed for stability and bifurcation behavior. To account for the realistic phenomenon of non-homogeneous mixing, the effect of diffusion on different population subclasses is considered. The diffusive model is analyzed using matrix stability theory and conditions for Turing bifurcation derived. Numerical simulations are performed to justify analytical findings.

[1]  Paul C. Fife,et al.  Mathematical Aspects of Reacting and Diffusing Systems , 1979 .

[2]  S. Levin,et al.  Dynamical behavior of epidemiological models with nonlinear incidence rates , 1987, Journal of mathematical biology.

[3]  A. Ōkubo,et al.  Di?usion and ecological problems: mathematical models , 1980 .

[4]  J. C. Burkill,et al.  Ordinary Differential Equations , 1964 .

[5]  Frank J. S. Wang Asymptotic Behavior of Some Deterministic Epidemic Models , 1978 .

[6]  O. Diekmann,et al.  Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation , 2000 .

[7]  Sandip Banerjee,et al.  Stability and bifurcation in a diffusive prey-predator system: Non-linear bifurcation analysis , 2002 .

[8]  E B Wilson,et al.  The Law of Mass Action in Epidemiology. , 1945, Proceedings of the National Academy of Sciences of the United States of America.

[9]  N. C. Severo Generalizations of some stochastic epidemic models , 1969 .

[10]  Dynamics of a delay-diffusion prey-predator model with disease in the prey , 2005 .

[11]  M. Lizana,et al.  Multiparametric bifurcations for a model in epidemiology , 1996, Journal of mathematical biology.

[12]  G. Serio,et al.  A generalization of the Kermack-McKendrick deterministic epidemic model☆ , 1978 .

[13]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[14]  H. Hethcote Three Basic Epidemiological Models , 1989 .

[15]  Y. Iwasa,et al.  Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models , 1986, Journal of mathematical biology.

[16]  Malay Bandyopadhyay,et al.  Diffusion-Driven Stability Analysis of A Prey-Predator System with Holling Type-IV Functional Response , 2003 .

[17]  A. J. Hall Infectious diseases of humans: R. M. Anderson & R. M. May. Oxford etc.: Oxford University Press, 1991. viii + 757 pp. Price £50. ISBN 0-19-854599-1 , 1992 .

[18]  P. Driessche,et al.  A disease transmission model in a nonconstant population , 1993, Journal of mathematical biology.

[19]  H. Hethcote PERIODICITY AND STABILITY IN EPIDEMIC MODELS: A SURVEY , 1981 .

[20]  Zhilan Feng,et al.  Homoclinic Bifurcation in an SIQR Model for Childhood Diseases , 2000 .

[21]  R. May,et al.  Population biology of infectious diseases: Part II , 1979, Nature.

[22]  John Cunningham,et al.  A Deterministic Model for Measles , 1979, Zeitschrift fur Naturforschung. Section C, Biosciences.

[23]  J. Yorke,et al.  Recurrent outbreaks of measles, chickenpox and mumps. II. Systematic differences in contact rates and stochastic effects. , 1973, American journal of epidemiology.

[24]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[25]  B Mukhopadhyay,et al.  A Delay-Diffusion Model of Marine Plankton Ecosystem Exhibiting Cyclic Nature of Blooms , 2005, Journal of biological physics.

[26]  F. Brauer,et al.  Mathematical Models in Population Biology and Epidemiology , 2001 .