A linear time algorithm for a variant of the max cut problem in series parallel graphs

Given a graph $G=(V, E)$, a connected sides cut $(U, V\backslash U)$ or $\delta (U)$ is the set of edges of E linking all vertices of U to all vertices of $V\backslash U$ such that the induced subgraphs $G[U]$ and $G[V\backslash U]$ are connected. Given a positive weight function $w$ defined on $E$, the maximum connected sides cut problem (MAX CS CUT) is to find a connected sides cut $\Omega$ such that $w(\Omega)$ is maximum. MAX CS CUT is NP-hard. In this paper, we give a linear time algorithm to solve MAX CS CUT for series parallel graphs. We deduce a linear time algorithm for the minimum cut problem in the same class of graphs without computing the maximum flow.

[1]  M. Laurent The real positive semidefinite completion problem for series-parallel graphs , 1997 .

[2]  A. P. Terebenkov NP-completeness of maximum-cut and cycle-covering problems for a planar graph , 1991, Cybernetics and Systems Analysis.

[3]  P. Seymour On Odd Cuts and Plane Multicommodity Flows , 1981 .

[4]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[5]  Jean Fonlupt,et al.  The traveling salesman problem in graphs with some excluded minors , 1992, Math. Program..

[6]  Siam J. CoMPtrr,et al.  FINDING A MAXIMUM CUT OF A PLANAR GRAPH IN POLYNOMIAL TIME * , 2022 .

[7]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[8]  Ali Ridha Mahjoub,et al.  On survivable network polyhedra , 2005, Discret. Math..

[9]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[10]  Shaoji Xu The line index and minimum cut of weighted graphs , 1998, Eur. J. Oper. Res..

[11]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[12]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .

[13]  Francisco Barahona,et al.  Planar Multicommodity Flows, Max Cut, and the Chinese Postman Problem , 1990, Polyhedral Combinatorics.

[14]  Venkatesan Guruswami Maximum Cut on Line and Total Graphs , 1999, Discret. Appl. Math..

[15]  Klaus Jansen,et al.  On the Complexity of the Maximum Cut Problem , 1994, Nord. J. Comput..

[16]  Xiao Zhou,et al.  List total colorings of series-parallel graphs , 2003, J. Discrete Algorithms.

[17]  Martin Grötschel,et al.  An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design , 1988, Oper. Res..

[18]  Jens Vygen,et al.  The edge-disjoint paths problem is NP-complete for series-parallel graphs , 2001, Discret. Appl. Math..

[19]  Evripidis Bampis,et al.  Scheduling UET-UCT Series-Parallel Graphs on Two Processors , 1996, Theor. Comput. Sci..

[20]  Paolo Detti,et al.  Minimum Dominating Trail Set for Two-Terminal Series Parallel Graphs , 2004, Electron. Notes Discret. Math..

[21]  Ruay-Shiung Chang,et al.  A note on the tour problems in two-terminal series-parallel graphs , 1993, Inf. Sci..

[22]  Mohamed Didi Biha,et al.  K-edge Connected Polyhedra on Series-parallel Graphs , 1996, Oper. Res. Lett..

[23]  Guoliang Xue,et al.  A PTAS for weight constrained Steiner trees in series-parallel graphs , 2003, Theor. Comput. Sci..

[24]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[25]  Gerhard J. Woeginger,et al.  The quadratic 0-1 knapsack problem with series-parallel support , 2002, Oper. Res. Lett..

[26]  Hans-Christoph Wirth,et al.  Optimizing cost flows by edge cost and capacity upgrade , 2004, J. Discrete Algorithms.

[27]  R.C.T. Lee,et al.  A Linear Time Algorithm to Solve the Weighted Perfect Domination Problem in Series-Parallel Graphs , 1994 .

[28]  José R. Correa,et al.  The node-edge weighted 2-edge connected subgraph problem: linear relaxation, facets and separation , 2005, Electron. Notes Discret. Math..

[29]  Zsolt Tuza,et al.  Maximum cuts and largest bipartite subgraphs , 1993, Combinatorial Optimization.

[30]  Wei-Kuan Shih,et al.  Unifying Maximum Cut and Minimum Cut of a Planar Graph , 1990, IEEE Trans. Computers.