An Explicit Solution for Computing the vertices of the Euclidean d-Dimensional Voronoi Diagram of Spheres in a Floating-Point Arithmetic
暂无分享,去创建一个
[1] Marina L. Gavrilova,et al. Reliable line segment intersection testing , 2000, Comput. Aided Des..
[2] Jon G. Rokne,et al. Exact computation of the sign of a finite sum , 1999, Appl. Math. Comput..
[3] Kokichi Sugihara,et al. A robust Topology-Oriented Incremental algorithm for Voronoi diagrams , 1994, Int. J. Comput. Geom. Appl..
[4] David B. Kirk,et al. Graphics Gems III , 1992 .
[5] Dinesh Manocha,et al. PRECISE: efficient multiprecision evaluation of algebraic roots and predicates for reliable geometric computation , 2001, SCG '01.
[6] Marina L. Gavrilova. A reliable algorithm for computing the generalized voronoi diagram for a set of spheres in the euclidean d-dimensional space , 2002, CCCG.
[7] Christopher J. Van Wyk,et al. Efficient exact arithmetic for computational geometry , 1993, SCG '93.
[8] Marina L. Gavrilova,et al. Exact Computation of Delaunay and Power Triangulations , 2000, Reliab. Comput..
[9] Chee Yap,et al. The exact computation paradigm , 1995 .
[10] Kurt Mehlhorn,et al. The leda user manual , 1996 .