Thermal boundary conductance between refractory metal carbides and diamond

The thermal boundary conductance (TBC) between thin films of Cr, Mo, Nb and W and diamond substrates has been measured using time domain thermoreflectance before and after a high-vacuum heat treatment at 800 degrees C for 2 h. While no signs of carbide formation could be detected in as-deposited layers by scanning transmission electron microscopy energy dispersive X-ray spectroscopy elemental analysis, the heat treatment led to partial (W,Mo) or full conversion (Cr,Nb) of the film into carbide. The measured TBC values on as-deposited samples of 315, 220, 220 and 205 MW m (-2) K (-1) measured for, respectively, the Cr, Mo, Nb and W samples, were found to not be significantly altered by the heat treatment. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

[1]  Hugh O. Pierson,et al.  Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications , 1996 .

[2]  A. Rempel,et al.  Heat capacity of niobium and tantalum carbides NbCy and TaCy in disordered and ordered states below 300 K , 1996 .

[3]  L. Schlapbach,et al.  Photoelectron emission from nitrogen- and boron-doped diamond (100) surfaces , 1998 .

[4]  P. Oelhafen,et al.  Photoelectron spectroscopy study of natural (100), (110), (111) and CVD diamond surfaces , 1996 .

[5]  Caiyu Guo,et al.  Preparation of copper–diamond composites with chromium carbide coatings on diamond particles for heat sink applications , 2013 .

[6]  S. Dodd,et al.  Ultrasonic study of the temperature and pressure dependences of the elastic properties of ceramic dimolybdenum carbide (α-Mo2C) , 2004 .

[7]  D. Cahill,et al.  Thermal conductance of epitaxial interfaces , 2003 .

[8]  W. Desorbo Heat Capacity of Chromium Carbide (Cr3C2) from 13 to 300°K. , 1953 .

[9]  A. Mortensen,et al.  Thermal conductivity and interfacial conductance of AlN particle reinforced metal matrix composites , 2011 .

[10]  Richard J. Colton,et al.  Electronic structure to tungsten and some of its borides, carbides, nitrides, and oxides by x-ray electron spectroscopy , 1976 .

[11]  T. Imai,et al.  The measurement of thermal properties of diamond , 1997 .

[12]  S. Contarini,et al.  Ion-beam-induced chemical changes in the oxyanions (Moyn-) and oxides (Mox) where M = chromium, molybdenum, tungsten, vanadium, niobium and tantalum , 1987 .

[13]  Kun Zhao,et al.  Magnetical and electrical tuning of transient photovoltaic effects in manganite-based heterojunctions. , 2012, Optics express.

[14]  Tingting Liu,et al.  Effect of molybdenum carbide intermediate layers on thermal properties of copper–diamond composites , 2013 .

[15]  V. Zhukov,et al.  Energy band structure and thermo-mechanical properties of tungsten and tungsten carbides as studied by the LMTO-ASA method , 1985 .

[16]  Kikuo Ujihara Reflectivity of Metals at High Temperatures , 1972 .

[17]  Martha E. Grady,et al.  Effects of chemical bonding on heat transport across interfaces. , 2012, Nature materials.

[18]  B. Kieback,et al.  Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications , 2008 .

[19]  H. A. Chatilyan,et al.  Kinetics of tungsten carbidization under non-isothermal conditions , 2008 .

[20]  Carl Zweben,et al.  Advances in high-performance thermal management materials : A review , 2007 .

[21]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[22]  A. Hardy,et al.  Catalytic properties of transition metal carbides: I. Preparation and physical characterization of bulk mixed carbides of molybdenum and tungsten , 1989 .

[23]  F. Hemming,et al.  The multi-surface structure and catalytic properties of partially reduced WO3, WO2 and WC + O2 or W + O2 as characterized by XPS , 1995 .

[24]  C. Kittel Introduction to solid state physics , 1954 .

[25]  U. E. Klotz,et al.  Interface formation in infiltrated Al(Si)/diamond composites , 2006 .

[26]  L. Weber,et al.  On the influence of active element content on the thermal conductivity and thermal expansion of Cu-X (X = Cr, B) diamond composites , 2007 .

[27]  P. Uggowitzer,et al.  Selective interfacial bonding in Al(Si)–diamond composites and its effect on thermal conductivity , 2006 .

[28]  L. Weber,et al.  Effect of diamond surface orientation on the thermal boundary conductance between diamond and aluminum , 2013 .

[29]  L. Schlapbach,et al.  Electron affinity and work function of differently oriented and doped diamond surfaces determined by photoelectron spectroscopy , 1998 .

[30]  B. Kieback,et al.  Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications , 2008 .

[31]  L. Weber,et al.  Thermal boundary conductance of transition metals on diamond , 2012 .

[32]  C. Jia,et al.  On the thermal conductivity of Cu–Zr/diamond composites , 2013 .

[33]  L. Weber,et al.  Influence of diamond surface termination on thermal boundary conductance between Al and diamond , 2013 .

[34]  L. Matienzo,et al.  X-ray photoelectron spectroscopy of inorganic and organometallic compounds of molybdenum , 1975 .

[35]  Grimvall,et al.  Homology of interatomic forces and Debye temperatures in transition metals. , 1989, Physical review. B, Condensed matter.

[36]  H. Goretzki,et al.  Small area MXPS- and TEM-measurements on temper-embrittled 12% Cr steel , 1989 .

[37]  M. Schmal,et al.  Niobium Carbide Synthesis from Niobium Oxide: Study of the Synthesis Conditions, Kinetics, and Solid-State Transformation Mechanism , 1996 .

[38]  G. Beamson,et al.  Analysis of chemical vapour deposited diamond films by X-ray photoelectron spectroscopy , 2001 .

[39]  G. Eesley,et al.  Transient thermoreflectance from thin metal films , 1986, Annual Meeting Optical Society of America.

[40]  Mohamed Chaker,et al.  Direct evaluation of the sp3 content in diamond-like-carbon films by XPS , 1998 .

[41]  Leonid V. Zhigilei,et al.  Enhancing and tuning phonon transport at vibrationally mismatched solid-solid interfaces , 2012 .

[42]  Construction and characterization of a sputter deposition system for coating granular materials , 2009 .

[43]  M. Rubin,et al.  Optical and electrochemical characteristics of niobium oxide films prepared by sol-gel process and magnetron sputtering A comparison , 1996 .

[44]  Charles T. Campbell,et al.  Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties , 1997 .

[45]  Leilei Xu,et al.  Theoretical study on the stability, elasticity, hardness and electronic structures of W-C binary compounds , 2010 .

[46]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[47]  S. Kidalov,et al.  High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix , 2011 .

[48]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[49]  Avik W. Ghosh,et al.  Effect of interface adhesion and impurity mass on phonon transport at atomic junctions , 2013 .

[50]  E. Kaxiras,et al.  Qualitative link between work of adhesion and thermal conductance of metal/diamond interfaces , 2014 .

[51]  Robert R. Reeber,et al.  Thermophysical Properties of α‐Tungsten Carbide , 2004 .

[52]  P. Shaffer,et al.  Elastic moduli of niobium carbide and tantalum carbide at high temperature , 1971 .

[53]  I. E. Monje,et al.  Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control , 2013 .

[54]  J. Leciejewicz A note on the structure of tungsten carbide , 1961 .

[55]  R. Wyckoff,et al.  The Structure of Crystals , 1932, Nature.

[56]  H. Maris,et al.  Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. , 1993, Physical review. B, Condensed matter.

[57]  Gang Chen,et al.  Effects of surface chemistry on thermal conductance at aluminum–diamond interfaces , 2010 .

[58]  C. Nordling,et al.  Charge transfer in transition metal carbides and related compounds studied by ESCA , 1969 .

[59]  J. Molina,et al.  Thermal conductivity of aluminum matrix composites reinforced with mixtures of diamond and SiC particles , 2008 .

[60]  D. Cahill Analysis of heat flow in layered structures for time-domain thermoreflectance , 2004 .

[61]  J. L. Katz,et al.  Measurement of the thermal variation of the X‐ray Debye temperature of pure nickel and chromium , 1966 .

[62]  L. Ley,et al.  Photoelectron spectroscopy of clean and hydrogen-exposed diamond (111) surfaces , 1994 .

[63]  Andrew G. Glen,et al.  APPL , 2001 .

[64]  N. Chandra,et al.  The role of controlled interfaces in the thermal management of copper–carbon composites , 2012 .