Suppression of inflammation in a mouse model of rheumatoid arthritis using targeted lipase-labile fumagillin prodrug nanoparticles.

[1]  R. Gross,et al.  Antiangiogenic nanotherapy with lipase-labile Sn-2 fumagillin prodrug. , 2012, Nanomedicine.

[2]  S. Ekker,et al.  Methionine aminopeptidase 2 is required for HSC initiation and proliferation. , 2011, Blood.

[3]  Manojit Pramanik,et al.  Molecular photoacoustic imaging of angiogenesis with integrin‐targeted gold nanobeacons , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[4]  D. Hourcade,et al.  Variable Antibody-dependent Activation of Complement by Functionalized Phospholipid Nanoparticle Surfaces* , 2010, The Journal of Biological Chemistry.

[5]  S. Caruthers,et al.  MR angiogenesis imaging with Robo4‐ vs. αVβ3‐targeted nanoparticles in a B16/F10 mouse melanoma model , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[6]  G. Hu,et al.  Synergistic effect of antiangiogenic nanotherapy combined with methotrexate in the treatment of experimental inflammatory arthritis. , 2010, Nanomedicine.

[7]  S. Caruthers,et al.  MR molecular imaging of aortic angiogenesis. , 2010, JACC. Cardiovascular imaging.

[8]  A. Kassner,et al.  Assessment of tumor angiogenesis: dynamic contrast-enhanced MRI with paramagnetic nanoparticles compared with Gd-DTPA in a rabbit Vx-2 tumor model. , 2010, Contrast media & molecular imaging.

[9]  A. Koch,et al.  Angiogenesis and vasculogenesis in rheumatoid arthritis , 2010, Current opinion in rheumatology.

[10]  J. Arbeit,et al.  Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. , 2009, The Journal of clinical investigation.

[11]  S. Wickline,et al.  αvβ3–Targeted nanotherapy suppresses inflammatory arthritis in mice , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[12]  A. Koch,et al.  Angiogenesis and its targeting in rheumatoid arthritis. , 2009, Vascular pharmacology.

[13]  E. Brahn,et al.  Involution of Collagen-Induced Arthritis with an Angiogenesis Inhibitor, PPI-2458 , 2009, Journal of Pharmacology and Experimental Therapeutics.

[14]  S. Caruthers,et al.  Three‐dimensional MR mapping of angiogenesis with α5β1(αvβ3)‐targeted theranostic nanoparticles in the MDA‐MB‐435 xenograft mouse model , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[15]  Shelton D Caruthers,et al.  Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. , 2008, JACC. Cardiovascular imaging.

[16]  S. Caruthers,et al.  Minute dosages of ανβ3‐targeted fumagillin nanoparticles impair Vx‐2 tumor angiogenesis and development in rabbits , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[17]  Samuel A Wickline,et al.  Exploiting lipid raft transport with membrane targeted nanoparticles: a strategy for cytosolic drug delivery. , 2008, Biomaterials.

[18]  E. Brahn,et al.  Angiogenesis inhibition as a therapeutic approach for inflammatory synovitis , 2007, Nature Clinical Practice Rheumatology.

[19]  Garry E. Kiefer,et al.  Imaging of Vx‐2 rabbit tumors with ανβ3‐integrin‐targeted 111In nanoparticles , 2007 .

[20]  Raquel Soares,et al.  Angiogenesis and chronic inflammation: cause or consequence? , 2007, Angiogenesis.

[21]  G Jan,et al.  GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization , 2007, Oncogene.

[22]  T. Andresen,et al.  Secretory phospholipase A2 hydrolysis of phospholipid analogues is dependent on water accessibility to the active site. , 2007, Journal of the American Chemical Society.

[23]  G. Hannig,et al.  Suppression of inflammation and structural damage in experimental arthritis through molecular targeted therapy with PPI-2458. , 2007, Arthritis and rheumatism.

[24]  A. Mara,et al.  A chemical and genetic approach to the mode of action of fumagillin. , 2006, Chemistry & biology.

[25]  Samuel A. Wickline,et al.  Endothelial &agr;&ngr;&bgr;3 Integrin–Targeted Fumagillin Nanoparticles Inhibit Angiogenesis in Atherosclerosis , 2006 .

[26]  T. Andresen,et al.  Triggered activation and release of liposomal prodrugs and drugs in cancer tissue by secretory phospholipase A2. , 2005, Current drug delivery.

[27]  Grace Hu,et al.  Molecular MR imaging of melanoma angiogenesis with ανβ3‐targeted paramagnetic nanoparticles , 2005, Magnetic resonance in medicine.

[28]  E. Brahn,et al.  New antiangiogenic strategies for the treatment of proliferative synovitis , 2005, Expert opinion on investigational drugs.

[29]  T. Andresen,et al.  Secretory phospholipase A2 as a tumor-specific trigger for targeted delivery of a novel class of liposomal prodrug anticancer etherlipids. , 2004, Molecular cancer therapeutics.

[30]  C. D. Thompson,et al.  A methionine aminopeptidase-2 inhibitor, PPI-2458, for the treatment of rheumatoid arthritis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  D. Dione,et al.  Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. , 2004, The Journal of clinical investigation.

[32]  O. G. Mouritsen,et al.  Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs. , 2004, Journal of medicinal chemistry.

[33]  Samuel A. Wickline,et al.  Molecular Imaging of Angiogenesis in Early-Stage Atherosclerosis With &agr;v&bgr;3-Integrin–Targeted Nanoparticles , 2003 .

[34]  A. Koch,et al.  Angiogenesis as a target in rheumatoid arthritis , 2003, Annals of the rheumatic diseases.

[35]  A. Kassner,et al.  Molecular Imaging of Angiogenesis in Nascent Vx-2 Rabbit Tumors Using a Novel ανβ3-targeted Nanoparticle and 1.5 Tesla Magnetic Resonance Imaging , 2003 .

[36]  M. Corr,et al.  The KRN mouse model of inflammatory arthritis , 2003, Springer Seminars in Immunopathology.

[37]  S. Robinson,et al.  Design, synthesis, and evaluation of radiolabeled integrin αvβ3 receptor antagonists for tumor imaging and radiotherapy , 2003 .

[38]  O. G. Mouritsen,et al.  Secreted phospholipase A(2) as a new enzymatic trigger mechanism for localised liposomal drug release and absorption in diseased tissue. , 2003, Biochimica et biophysica acta.

[39]  Kerry K. Karukstis,et al.  Targeted Antiproliferative Drug Delivery to Vascular Smooth Muscle Cells With a Magnetic Resonance Imaging Nanoparticle Contrast Agent: Implications for Rational Therapy of Restenosis , 2002, Circulation.

[40]  O. G. Mouritsen,et al.  Biophysical mechanisms of phospholipase A2 activation and their use in liposome‐based drug delivery , 2002, FEBS letters.

[41]  C. Pham,et al.  Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. , 2002, The Journal of clinical investigation.

[42]  M. Pla,et al.  Suppression of arthritis and protection from bone destruction by treatment with TNP-470/AGM-1470 in a transgenic mouse model of rheumatoid arthritis. , 2000, Arthritis and rheumatism.

[43]  J. Henkin,et al.  Selective inhibition of endothelial cell proliferation by fumagillin is not due to differential expression of methionine aminopeptidases , 2000, Journal of cellular biochemistry.

[44]  J. Widom,et al.  Structure of human methionine aminopeptidase-2 complexed with fumagillin. , 1998, Science.

[45]  W. Bornmann,et al.  The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[46]  R A Bradshaw,et al.  Eukaryotic methionyl aminopeptidases: two classes of cobalt-dependent enzymes. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[47]  C. Alper,et al.  Cobra venom factor: evidence for its being altered cobra C3 (the third component of complement). , 1976, Science.

[48]  E. R. Garrett Studies on the stability of fumagillin. III. Thermal degradation in the presence and absence of air. , 1954, Journal of the American Pharmaceutical Association. American Pharmaceutical Association.

[49]  E. R. Garrett,et al.  Studies on the Stability of Furnagillin: II. Photolytic Degradation of Crystalline Furnagillin , 1954 .

[50]  E. R. Garrett,et al.  Studies on the stability of fumagillin. I. Photolytic degradation in alcohol solution. , 1954, Journal of the American Pharmaceutical Association. American Pharmaceutical Association.

[51]  S. Caruthers,et al.  Imaging of Vx-2 rabbit tumors with alpha(nu)beta3-integrin-targeted 111In nanoparticles. , 2007, International journal of cancer.

[52]  Shelton D Caruthers,et al.  Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. , 2006, Arteriosclerosis, thrombosis, and vascular biology.

[53]  P. Klimiuk,et al.  Reduction of soluble adhesion molecules (sICAM-1, sVCAM-1, and sE-selectin) and vascular endothelial growth factor levels in serum of rheumatoid arthritis patients following multiple intravenous infusions of infliximab. , 2004, Archivum immunologiae et therapiae experimentalis.

[54]  Shelton D Caruthers,et al.  Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. , 2003, Cancer research.

[55]  Shelton D Caruthers,et al.  Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. , 2003, Circulation.

[56]  P. Yalamanchili,et al.  Design, synthesis, and evaluation of radiolabeled integrin alpha v beta 3 receptor antagonists for tumor imaging and radiotherapy. , 2003, Cancer biotherapy & radiopharmaceuticals.

[57]  G. Firestein Starving the synovium: angiogenesis and inflammation in rheumatoid arthritis. , 1999, The Journal of clinical investigation.

[58]  E. R. Garrett,et al.  Studies on the stability of fumagillin. II. Photolytic degradation of crystalline fumagillin. , 1954, Journal of the American Pharmaceutical Association. American Pharmaceutical Association.