Towards the automated engineering of a synthetic genome.

The development of the technology to synthesize new genomes and to introduce them into hosts with inactivated wild-type chromosome opens the door to new horizons in synthetic biology. Here it is of outmost importance to harness the ability of using computational design to predict and optimize a synthetic genome before attempting its synthesis. The methodology to computationally design a genome is based on an optimization that computationally mimics genome evolution. The biggest bottleneck lies on the use of an appropriate fitness function. This fitness function, usually cell growth, relies on the ability to quantitatively model the biochemical networks of the cell at the genome scale using parameters inferred from high-throughput data. Computational methods integrating such models in a common multilayer design platform can be used to automatically engineer synthetic genomes under physiological specifications. We describe the current state-of-the-art on automated methods for engineering or re-engineering synthetic genomes. We restrict ourselves to global models of metabolism, transcription and DNA structure. Although we are still far from the de novo computational genome design, it is important to collect all relevant work towards this goal. Finally, we discuss future perspectives about the practicability of an automated methodology for such computational design of synthetic genomes.

[1]  David Botstein,et al.  The Stanford Microarray Database: data access and quality assessment tools , 2003, Nucleic Acids Res..

[2]  F. Zimmermann,et al.  Overproduction of glycolytic enzymes in yeast , 1989, Yeast.

[3]  Bernhard Palsson,et al.  In silico biology through “omics” , 2002, Nature Biotechnology.

[4]  George M Church,et al.  Towards synthesis of a minimal cell , 2006, Molecular systems biology.

[5]  F. Arnold,et al.  Directed evolution of enzyme catalysts. , 1997, Trends in biotechnology.

[6]  N. Wingreen,et al.  A quantitative comparison of sRNA-based and protein-based gene regulation , 2008, Molecular systems biology.

[7]  Jesper Tegnér,et al.  Reverse engineering gene networks using singular value decomposition and robust regression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  E. Ruppin,et al.  Regulatory on/off minimization of metabolic flux changes after genetic perturbations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  E. Raineri,et al.  Evolvability and hierarchy in rewired bacterial gene networks , 2008, Nature.

[10]  Oliver Ebenhöh,et al.  MetaPath Online: a web server implementation of the network expansion algorithm , 2007, Nucleic Acids Res..

[11]  D. di Bernardo,et al.  How to infer gene networks from expression profiles , 2007, Molecular systems biology.

[12]  Rainer Merkl,et al.  Computational design of enzymes. , 2008, Chemistry & biology.

[13]  B. Palsson,et al.  Constraints-based models: regulation of gene expression reduces the steady-state solution space. , 2003, Journal of theoretical biology.

[14]  R. Heinrich,et al.  Metabolic Pathway Analysis: Basic Concepts and Scientific Applications in the Post‐genomic Era , 1999, Biotechnology progress.

[15]  Julio Collado-Vides,et al.  RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions , 2005, Nucleic Acids Res..

[16]  Dennis B. Troup,et al.  NCBI GEO: mining tens of millions of expression profiles—database and tools update , 2006, Nucleic Acids Res..

[17]  Florian Steinke,et al.  Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models , 2006, BMC Systems Biology.

[18]  J. Collins,et al.  Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks , 2005, Nature Biotechnology.

[19]  L. Glass,et al.  Evolving complex dynamics in electronic models of genetic networks. , 2004, Chaos.

[20]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[21]  Oliver Kohlbacher,et al.  MetaRoute: fast search for relevant metabolic routes for interactive network navigation and visualization , 2008, Bioinform..

[22]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Vinay Satish Kumar,et al.  A Genome-Scale Metabolic Reconstruction of Mycoplasma genitalium, iPS189 , 2009, PLoS Comput. Biol..

[24]  U. Sauer,et al.  Article number: 62 REVIEW Metabolic networks in motion: 13 C-based flux analysis , 2022 .

[25]  J. Keasling,et al.  Engineering a mevalonate pathway in Escherichia coli for production of terpenoids , 2003, Nature Biotechnology.

[26]  G. Church,et al.  Systematic determination of genetic network architecture , 1999, Nature Genetics.

[27]  Alfonso Jaramillo,et al.  DESHARKY: automatic design of metabolic pathways for optimal cell growth , 2008, Bioinform..

[28]  B O Palsson,et al.  Metabolic modeling of microbial strains in silico. , 2001, Trends in biochemical sciences.

[29]  S. Lee,et al.  Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation , 2007, Proceedings of the National Academy of Sciences.

[30]  B. Palsson,et al.  The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Jason A. Papin,et al.  Extreme pathway lengths and reaction participation in genome-scale metabolic networks. , 2002, Genome research.

[32]  V. Hakim,et al.  Design of genetic networks with specified functions by evolution in silico. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Sri R. Paladugu,et al.  In silico evolution of functional modules in biochemical networks. , 2006, Systems biology.

[34]  M. Bennett,et al.  Metabolic gene regulation in a dynamically changing environment , 2008, Nature.

[35]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[36]  B. Palsson,et al.  Genome-scale Reconstruction of Metabolic Network in Bacillus subtilis Based on High-throughput Phenotyping and Gene Essentiality Data* , 2007, Journal of Biological Chemistry.

[37]  I S Kohane,et al.  Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[38]  J. Bailey,et al.  Toward a science of metabolic engineering , 1991, Science.

[39]  J. Hasty,et al.  Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Guido Sanguinetti,et al.  Identifying differentially expressed subnetworks with MMG , 2008, Bioinform..

[41]  V. de Lorenzo,et al.  Metabolic engineering of bacteria for environmental applications: construction of Pseudomonas strains for biodegradation of 2-chlorotoluene. , 2001, Journal of biotechnology.

[42]  María Suárez,et al.  Pareto optimization in computational protein design with multiple objectives , 2008, J. Comput. Chem..

[43]  C. Schilling,et al.  Flux coupling analysis of genome-scale metabolic network reconstructions. , 2004, Genome research.

[44]  D. Fell,et al.  Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. , 1999, Trends in biotechnology.

[45]  Masaru Tomita,et al.  E-CELL: software environment for whole-cell simulation , 1999, Bioinform..

[46]  Costas D Maranas,et al.  OptStrain: a computational framework for redesign of microbial production systems. , 2004, Genome research.

[47]  J. Carrera,et al.  Model-based redesign of global transcription regulation , 2009, Nucleic acids research.

[48]  Shoshana J. Wodak,et al.  Metabolic PathFinding: inferring relevant pathways in biochemical networks , 2005, Nucleic Acids Res..

[49]  U. Sauer,et al.  Metabolic Flux Responses to Pyruvate Kinase Knockout in Escherichia coli , 2002, Journal of bacteriology.

[50]  Joan Hérisson,et al.  ADN-Viewer: a 3D approach for bioinformatic analyses of large DNA sequences. , 2007, Cellular and molecular biology.

[51]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[52]  A. Paul,et al.  Chemical Synthesis of Poliovirus cDNA: Generation of Infectious Virus in the Absence of Natural Template , 2002, Science.

[53]  A. Burgard,et al.  Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization , 2003, Biotechnology and bioengineering.

[54]  J. Boeke,et al.  GeneDesign: rapid, automated design of multikilobase synthetic genes. , 2006, Genome research.

[55]  U. Sauer,et al.  Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli , 2007, Molecular systems biology.

[56]  Michael Hucka,et al.  A Correction to the Review Titled "Rules for Modeling Signal-Transduction Systems" by W. S. Hlavacek et al. , 2006, Science's STKE.

[57]  Antje Chang,et al.  BRENDA, enzyme data and metabolic information , 2002, Nucleic Acids Res..

[58]  Brian F. Pfleger,et al.  Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes , 2006, Nature Biotechnology.

[59]  C. A. Hutchinson,et al.  Genome transplantation in bacteria: changing one species to another. , 2007, Nature Reviews Microbiology.

[60]  B. Palsson,et al.  Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use , 1994, Bio/Technology.

[61]  David J. Reiss,et al.  Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks , 2006, BMC Bioinformatics.

[62]  Madhukar S. Dasika,et al.  A computational framework for the topological analysis and targeted disruption of signal transduction networks. , 2006, Biophysical journal.

[63]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[64]  D. Endy Reconstruction of the Genomes , 2008, Science.

[65]  Gregory Stephanopoulos,et al.  Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets , 2005, Nature Biotechnology.

[66]  Y. Qu,et al.  Microbial transformation of androst‐4‐ene‐3, 17‐dione by Bordetella sp. B4 CGMCC 2229 , 2009 .

[67]  Masaru Tomita,et al.  E-Cell 2: Multi-platform E-Cell simulation system , 2003, Bioinform..

[68]  S. Schuster,et al.  Metabolic network structure determines key aspects of functionality and regulation , 2002, Nature.

[69]  J. Collado-Vides,et al.  Internal-sensing machinery directs the activity of the regulatory network in Escherichia coli. , 2006, Trends in microbiology.

[70]  C. Ouzounis,et al.  Expansion of the BioCyc collection of pathway/genome databases to 160 genomes , 2005, Nucleic acids research.

[71]  B. Palsson,et al.  Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. , 2003, Genome research.

[72]  Jason A. Papin,et al.  Genome-Scale Reconstruction and Analysis of the Pseudomonas putida KT2440 Metabolic Network Facilitates Applications in Biotechnology , 2008, PLoS Comput. Biol..

[73]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[74]  Jeremiah J. Faith,et al.  Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata , 2007, Nucleic Acids Res..

[75]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[76]  Erwin P. Gianchandani,et al.  Correction: Dynamic Analysis of Integrated Signaling, Metabolic, and Regulatory Networks , 2008, PLoS Computational Biology.

[77]  P. Fu,et al.  Genome‐scale modeling of Synechocystis sp. PCC 6803 and prediction of pathway insertion , 2009 .

[78]  Araceli M. Huerta,et al.  From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[79]  Richard Bonneau,et al.  The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo , 2006, Genome Biology.

[80]  R. Sharan,et al.  A genome-scale computational study of the interplay between transcriptional regulation and metabolism , 2007, Molecular systems biology.

[81]  Richard Bonneau Learning biological networks: from modules to dynamics. , 2008, Nature chemical biology.

[82]  Linda J. Broadbelt,et al.  Computational discovery of biochemical routes to specialty chemicals , 2004 .

[83]  Alfonso Jaramillo,et al.  Challenges in the computational design of proteins , 2009, Journal of The Royal Society Interface.

[84]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[85]  M. Elowitz,et al.  Reconstruction of genetic circuits , 2005, Nature.

[86]  Robert Carlson,et al.  The pace and proliferation of biological technologies. , 2003, Biosecurity and bioterrorism : biodefense strategy, practice, and science.

[87]  Eric A. Althoff,et al.  De Novo Computational Design of Retro-Aldol Enzymes , 2008, Science.

[88]  Madhukar S. Dasika,et al.  OptCircuit: An optimization based method for computational design of genetic circuits , 2008, BMC Systems Biology.

[89]  Bruce A Shapiro,et al.  Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler. , 2008, Journal of molecular graphics & modelling.

[90]  B. Palsson,et al.  In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data , 2001, Nature Biotechnology.

[91]  Peter D. Karp,et al.  Multidimensional annotation of the Escherichia coli K-12 genome , 2007, Nucleic acids research.

[92]  Nan Xiao,et al.  Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli , 2008, Bioinform..

[93]  Timothy B. Stockwell,et al.  Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome , 2008, Science.

[94]  Alfonso Valencia,et al.  MetaRouter: bioinformatics for bioremediation , 2004, Nucleic Acids Res..

[95]  Jörg Stelling,et al.  Computational design of synthetic gene circuits with composable parts , 2008, Bioinform..

[96]  Bernhard O. Palsson,et al.  A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory , 2008, BMC Systems Biology.

[97]  Saeed Tavazoie,et al.  Predictive Behavior within Microbial Genetic Networks , 2009 .

[98]  A. Burgard,et al.  Optimization-based framework for inferring and testing hypothesized metabolic objective functions. , 2003, Biotechnology and bioengineering.

[99]  Adam A. Margolin,et al.  Reverse engineering of regulatory networks in human B cells , 2005, Nature Genetics.

[100]  Chunhui Li,et al.  Exploring the diversity of complex metabolic networks , 2005, Bioinform..

[101]  J. Craig Venter,et al.  Genome Transplantation in Bacteria: Changing One Species to Another , 2007, Science.

[102]  David Eppstein,et al.  Finding the k shortest paths , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[103]  C. Rice,et al.  Efficient initiation of HCV RNA replication in cell culture. , 2000, Science.

[104]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[105]  John W. Pinney,et al.  metaSHARK: a WWW platform for interactive exploration of metabolic networks , 2006, Nucleic Acids Res..

[106]  Amy K. Schmid,et al.  A Predictive Model for Transcriptional Control of Physiology in a Free Living Cell , 2007, Cell.

[107]  S. Lee,et al.  Metabolic Engineering of Escherichia coli for Enhanced Production of Succinic Acid, Based on Genome Comparison and In Silico Gene Knockout Simulation , 2005, Applied and Environmental Microbiology.

[108]  M. Perrier,et al.  Development of a kinetic metabolic model: application to Catharanthus roseus hairy root , 2006, Bioprocess and biosystems engineering.

[109]  J. Nielsen,et al.  Mathematical modelling of metabolism. , 2000, Current opinion in biotechnology.

[110]  Masanori Arita The metabolic world of Escherichia coli is not small. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[111]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[112]  Saeed Tavazoie,et al.  Predictive Behavior Within Microbial Genetic Networks , 2008, Science.

[113]  Erwin P. Gianchandani,et al.  Dynamic Analysis of Integrated Signaling, Metabolic, and Regulatory Networks , 2008, PLoS Comput. Biol..

[114]  M. Wall,et al.  Design of gene circuits: lessons from bacteria , 2004, Nature Reviews Genetics.

[115]  J Craig Venter,et al.  Generating a synthetic genome by whole genome assembly: φX174 bacteriophage from synthetic oligonucleotides , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[116]  Paul P. Wang,et al.  Advances to Bayesian network inference for generating causal networks from observational biological data , 2004, Bioinform..

[117]  Eric A. Althoff,et al.  Kemp elimination catalysts by computational enzyme design , 2008, Nature.

[118]  Sarah J Kodumal,et al.  Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[119]  Lynda B. M. Ellis,et al.  Microbial Pathway Prediction: A Functional Group Approach , 2003, J. Chem. Inf. Comput. Sci..

[120]  L. Mirny,et al.  How gene order is influenced by the biophysics of transcription regulation , 2007, Proceedings of the National Academy of Sciences.

[121]  J. Collins,et al.  Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling , 2003, Science.

[122]  Alfonso Jaramillo,et al.  Genetdes: automatic design of transcriptional networks , 2007, Bioinform..

[123]  Diego di Bernardo,et al.  Inference of gene regulatory networks and compound mode of action from time course gene expression profiles , 2006, Bioinform..