Time-domain finite-element methods

Various time-domain finite-element methods for the simulation of transient electromagnetic wave phenomena are discussed. Detailed descriptions of test/trial spaces, explicit and implicit formulations, nodal and edge/facet element basis functions are given, along with the numerical stability properties of the different methods. The advantages and disadvantages of mass lumping are examined. Finally, the various formulations are compared on the basis of their numerical dispersion performance.

[1]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[2]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[3]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[4]  D. N. Herting,et al.  Finite elements: Computational aspects: Vol. III, by G.F. Carey and J. Tinsley Oden, Prentice-Hall, Englewood Cliffs, NJ, 1984 , 1985 .

[5]  Andreas C. Cangellaris,et al.  Point-matched time domain finite element methods for electromagnetic radiation and scattering , 1987 .

[6]  Alain Bossavit,et al.  Edge-elements for scattering problems , 1989 .

[7]  Keith D. Paulsen,et al.  Time-domain integration of the Maxwell equations on finite elements , 1990 .

[8]  A. Cangellaris,et al.  7 – THE METHOD OF CONFORMING BOUNDARY ELEMENTS FOR TRANSIENT ELECTROMAGNETICS , 1990 .

[9]  Peter Monk,et al.  A mixed method for approximating Maxwell's equations , 1991 .

[10]  K. Paulsen,et al.  Elimination of vector parasites in finite element Maxwell solutions , 1991 .

[11]  R. Lee,et al.  A study of discretization error in the finite element approximation of wave solutions , 1992 .

[12]  Robert J. Lee,et al.  On the Accuracy of Numerical Wave Simulations Based on Finite Methods , 1992 .

[13]  Raj Mittra,et al.  Radar cross section computation of inhomogeneous scatterers using edge‐based finite element methods in frequency and time domains , 1993 .

[14]  H. Sangani,et al.  An explicit finite-difference time-domain method using Whitney elements , 1994, Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting.

[15]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[16]  W. Scott,et al.  An investigation of numerical dispersion in the vector finite element method using quadrilateral elements , 1994 .

[17]  Jin-Fa Lee,et al.  A perfectly matched anisotropic absorber for use as an absorbing boundary condition , 1995 .

[18]  O. Picon,et al.  A finite element method based on Whitney forms to solve Maxwell equations in the time domain , 1995 .

[19]  Jin-Fa Lee,et al.  Whitney elements time domain (WETD) methods , 1995 .

[20]  F. Maradei,et al.  Hybrid finite element solutions of time dependent Maxwell's curl equations , 1995 .

[21]  Andreas C. Cangellaris,et al.  A general approach for the development of unsplit-field time-domain implementations of perfectly matched layers for FDTD grid truncation , 1996 .

[22]  M. Krumpholz,et al.  MRTD: new time-domain schemes based on multiresolution analysis , 1996 .

[23]  F. Maradei,et al.  An explicit-implicit solution scheme to analyze fast transients by finite elements , 1997 .

[24]  Robert J. Lee,et al.  The advantages of triangular and tetrahedral edge elements for electromagnetic modeling with the finite-element method , 1997 .