Magic Numbers and Ternary Alphabet
暂无分享,去创建一个
[1] Akihiro Matsuura,et al. Equivalent Transformation of Minimal Finite Automata over a Two-Letter Alphabet , 2008, DCFS.
[2] Jeffrey Shallit,et al. A Lower Bound Technique for the Size of Nondeterministic Finite Automata , 1996, Inf. Process. Lett..
[3] Michael Sipser,et al. Introduction to the Theory of Computation , 1996, SIGA.
[4] Jean-Camille Birget,et al. Intersection and Union of Regular Languages and State Complexity , 1992, Inf. Process. Lett..
[5] Marek Chrobak,et al. Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..
[6] Viliam Geffert. (Non)determinism and the Size of One-Way Finite Automata , 2005, DCFS.
[7] Jozef Jirásek,et al. State complexity of concatenation and complementation , 2005, Int. J. Found. Comput. Sci..
[8] Galina Jirásková,et al. On the State Complexity of Complements, Stars, and Reversals of Regular Languages , 2008, Developments in Language Theory.
[9] Viliam Geffert,et al. Magic numbers in the state hierarchy of finite automata , 2006, Inf. Comput..
[10] Jean-Camille Birget,et al. Partial Orders on Words, Minimal Elements of Regular Languages and State Complexity , 1993, Theor. Comput. Sci..
[11] Yahiko Kambayashi,et al. Tight bounds on the number of states of DFAs that are equivalent to n-state NFAs , 2000, Theor. Comput. Sci..
[12] Jürgen Dassow,et al. Nonterminal Complexity of Some Operations on Context-Free Languages , 2008, Fundam. Informaticae.
[13] Mike Paterson,et al. A family of NFAs which need 2n- deterministic states , 2003, Theor. Comput. Sci..
[14] Jozef Jirásek,et al. Deterministic Blow-Ups of Minimal Nondeterministic Finite Automata over a Fixed Alphabet , 2008, Int. J. Found. Comput. Sci..
[15] Alfred V. Aho,et al. On notions of information transfer in VLSI circuits , 1983, STOC.
[16] Lynette van Zijl,et al. Magic numbers for symmetric difference NFAS , 2004, Int. J. Found. Comput. Sci..
[17] Dana S. Scott,et al. Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..
[18] Galina Jirásková. Note on Minimal Finite Automata , 2001, MFCS.
[19] Juraj Hromkovic,et al. Communication Complexity and Parallel Computing , 1997, Texts in Theoretical Computer Science An EATCS Series.