Magic Numbers and Ternary Alphabet

A number ?, in the range from n to 2 n , is magic for n with respect to a given alphabet size s, if there is no minimal nondeterministic finite automaton of n states and s input letters whose equivalent minimal deterministic finite automaton has ? states. We show that in the case of a ternary alphabet, there are no magic numbers. For all n and ? satisfying that $n \leqslant \alpha \leqslant 2^n$, we describe an n-state nondeterministic automaton with a three-letter input alphabet that needs ? deterministic states.

[1]  Akihiro Matsuura,et al.  Equivalent Transformation of Minimal Finite Automata over a Two-Letter Alphabet , 2008, DCFS.

[2]  Jeffrey Shallit,et al.  A Lower Bound Technique for the Size of Nondeterministic Finite Automata , 1996, Inf. Process. Lett..

[3]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[4]  Jean-Camille Birget,et al.  Intersection and Union of Regular Languages and State Complexity , 1992, Inf. Process. Lett..

[5]  Marek Chrobak,et al.  Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..

[6]  Viliam Geffert (Non)determinism and the Size of One-Way Finite Automata , 2005, DCFS.

[7]  Jozef Jirásek,et al.  State complexity of concatenation and complementation , 2005, Int. J. Found. Comput. Sci..

[8]  Galina Jirásková,et al.  On the State Complexity of Complements, Stars, and Reversals of Regular Languages , 2008, Developments in Language Theory.

[9]  Viliam Geffert,et al.  Magic numbers in the state hierarchy of finite automata , 2006, Inf. Comput..

[10]  Jean-Camille Birget,et al.  Partial Orders on Words, Minimal Elements of Regular Languages and State Complexity , 1993, Theor. Comput. Sci..

[11]  Yahiko Kambayashi,et al.  Tight bounds on the number of states of DFAs that are equivalent to n-state NFAs , 2000, Theor. Comput. Sci..

[12]  Jürgen Dassow,et al.  Nonterminal Complexity of Some Operations on Context-Free Languages , 2008, Fundam. Informaticae.

[13]  Mike Paterson,et al.  A family of NFAs which need 2n- deterministic states , 2003, Theor. Comput. Sci..

[14]  Jozef Jirásek,et al.  Deterministic Blow-Ups of Minimal Nondeterministic Finite Automata over a Fixed Alphabet , 2008, Int. J. Found. Comput. Sci..

[15]  Alfred V. Aho,et al.  On notions of information transfer in VLSI circuits , 1983, STOC.

[16]  Lynette van Zijl,et al.  Magic numbers for symmetric difference NFAS , 2004, Int. J. Found. Comput. Sci..

[17]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[18]  Galina Jirásková Note on Minimal Finite Automata , 2001, MFCS.

[19]  Juraj Hromkovic,et al.  Communication Complexity and Parallel Computing , 1997, Texts in Theoretical Computer Science An EATCS Series.