The Low-Frequency Environment of the Murchison Widefield Array: Radio-Frequency Interference Analysis and Mitigation

Abstract The Murchison Widefield Array is a new low-frequency interferometric radio telescope built in Western Australia at one of the locations of the future Square Kilometre Array. We describe the automated radio-frequency interference detection strategy implemented for the Murchison Widefield Array, which is based on the aoflagger platform, and present 72–231 MHz radio-frequency interference statistics from 10 observing nights. Radio-frequency interference detection removes 1.1% of the data. Radio-frequency interference from digital TV is observed 3% of the time due to occasional ionospheric or atmospheric propagation. After radio-frequency interference detection and excision, almost all data can be calibrated and imaged without further radio-frequency interference mitigation efforts, including observations within the FM and digital TV bands. The results are compared to a previously published Low-Frequency Array radio-frequency interference survey. The remote location of the Murchison Widefield Array results in a substantially cleaner radio-frequency interference environment compared to Low-Frequency Array’s radio environment, but adequate detection of radio-frequency interference is still required before data can be analysed. We include specific recommendations designed to make the Square Kilometre Array more robust to radio-frequency interference, including: the availability of sufficient computing power for radio-frequency interference detection; accounting for radio-frequency interference in the receiver design; a smooth band-pass response; and the capability of radio-frequency interference detection at high time and frequency resolution (second and kHz-scale respectively).

S. J. Tingay | G. Bernardi | D. A. Mitchell | S. M. Ord | L. J. Greenhill | B. Pindor | R. B. Wayth | M. Johnston-Hollitt | N. Udaya Shankar | N. Hurley-Walker | J. C. Pober | M. Tegmark | C. M. Trott | M. E. Bell | P. Carroll | E. Lenc | K. S. Srivani | J. R. Callingham | K. S. Dwarakanath | L. Hindson | A. R. Offringa | P. Procopio | B. J. Hazelton | M. F. Morales | A. P. Beardsley | J. D. Bowman | F. Briggs | A. Ewall-Wice | J. N. Hewitt | D. C. Jacobs | P. Kittiwisit | J. Line | N. Thyagarajan | E. Morgan | L. Staveley-Smith | B. M. Gaensler | R. L. Webster | B. McKinley | D. L. Kaplan | T. Prabu | Max Tegmark | E. Lenc | D. Kaplan | J. Hewitt | B. Pindor | R. Webster | S. Tingay | M. Morales | C. Trott | E. Morgan | J. Callingham | A. Loeb | D. Oberoi | P. Carroll | R. Cappallo | I. Sullivan | R. Wayth | P. Procopio | A. Offringa | J. Pober | A. Beardsley | G. Bernardi | J. Bowman | J. Dillon | A. Ewall-Wice | B. Hazelton | D. Jacobs | P. Kittiwisit | A. Neben | N. Thyagarajan | J. Wyithe | L. Staveley-Smith | P. Hancock | R. Subrahmanyan | M. Johnston-Hollitt | F. Briggs | B. Gaensler | D. Mitchell | L. Greenhill | S. Ord | C. Lonsdale | S. McWhirter | A. Deshpande | M. Bell | B. For | L. Hindson | A. Williams | S. Sethi | K. Dwarakanath | N. Hurley-Walker | N. Shankar | K. Srivani | J. Morgan | B. McKinley | C. Wu | Q. Zheng | T. Prabu | C. Williams | A. Kapi'nska | L. Feng | J. Riding | J. Line | N. Barry | A. Williams | Hs. Kim | N. Barry | R. J. Cappallo | A. A. Deshpande | J. S. Dillon | L. Feng | B.-Q. For | P. Hancock | H.-S. Kim | A. Loeb | C. J. Lonsdale | S. R. McWhirter | J. Morgan | A. R. Neben | D. Oberoi | S. Paul | J. Riding | R. Subrahmanyan | I. S. Sullivan | C. L. Williams | C. Wu | Q. Zheng | A. D. Kapi'nska | S. Sethi | J. S. Wyithe | S. Paul

[1]  J. Anderson,et al.  The brightness and spatial distributions of terrestrial radio sources , 2013, 1307.5580.

[2]  A. R. Whitney,et al.  LOW-FREQUENCY OBSERVATIONS OF THE MOON WITH THE MURCHISON WIDEFIELD ARRAY , 2012, 1211.1433.

[3]  E. Lenc,et al.  Modelling of the Spectral Energy Distribution of Fornax A : Leptonic and Hadronic Production of High Energy Emission from the Radio Lobes , 2014, 1411.1487.

[4]  T. Murphy,et al.  Limits on low-frequency radio emission from southern exoplanets with the Murchison Widefield Array , 2014, 1410.6819.

[5]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[6]  Ousmane Thiare,et al.  Using Maekawa's Algorithm to Perform Distributed Mutual Exclusion in Quorums , 2012 .

[7]  S. Markoff,et al.  LOFAR - low frequency array , 2006 .

[8]  Alan E. E. Rogers,et al.  The Murchison Widefield Array: Design Overview , 2009, Proceedings of the IEEE.

[9]  G. Swarup,et al.  The Giant Metrewave Radio Telescope , 2013 .

[10]  Michael Biehl,et al.  Post‐correlation radio frequency interference classification methods , 2010, 1002.1957.

[11]  A. R. Whitney,et al.  The First Murchison Widefield Array low-frequency radio observations of cluster scale non-thermal emission: the case of Abell 3667 , 2014, 1408.3167.

[12]  T. Murphy,et al.  wsclean: an implementation of a fast, generic wide-field imager for radio astronomy , 2014, 1407.1943.

[13]  David F. Moore,et al.  New Limits on 21cm EoR From PAPER-32 Consistent with an X-Ray Heated IGM at z=7.7 , 2013, 1304.4991.

[14]  S. Burke-Spolaor,et al.  Enhanced pulsar and single pulse detection via automated radio frequency interference detection in multipixel feeds , 2012 .

[15]  A. A. Deshpande,et al.  FAST HOLOGRAPHIC DECONVOLUTION: A NEW TECHNIQUE FOR PRECISION RADIO INTERFEROMETRY , 2012, 1209.1653.

[16]  Enno Middelberg,et al.  Automated Editing of Radio Interferometer Data with PIEFLAG , 2006, Publications of the Astronomical Society of Australia.