On the error probability of short concatenated polar and cyclic codes with interleaving

In this paper, we study of the performance of the concatenation of a short polar code with an outer binary linear block code from a distance spectrum viewpoint. Our analysis targets the case where an outer cyclic code is employed together with an inner systematic polar code. A concatenated code ensemble is defined placing an interleaver at the input of the polar encoder. The introduced ensemble allows deriving bounds on the achievable error rates under maximum likelihood decoding, by applying the union bound to the (expurgated) average weight enumerators. The analysis suggests the need of careful optimization of the outer code, to attain low error floors. We also investigate the performance of a number of randomly chosen interleavers, with the aim to discuss the dispersion around the ensemble.

[1]  Vera Pless Review: F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes. I and II , 1978 .

[2]  Bin Li,et al.  A RM-Polar Codes , 2014, ArXiv.

[3]  Norbert Stolte,et al.  Rekursive Codes mit der Plotkin-Konstruktion und ihre Decodierung , 2002 .

[4]  Gianluigi Liva,et al.  Code Design for Short Blocks: A Survey , 2016, ArXiv.

[5]  Paul H. Siegel,et al.  Polar codes for magnetic recording channels , 2015, 2015 IEEE Information Theory Workshop (ITW).

[6]  Kai Chen,et al.  CRC-Aided Decoding of Polar Codes , 2012, IEEE Communications Letters.

[7]  Jack K. Wolf,et al.  An exact evaluation of the probability of undetected error for certain shortened binary CRC codes , 1988, MILCOM 88, 21st Century Military Communications - What's Possible?'. Conference record. Military Communications Conference.

[8]  Peter Trifonov,et al.  Efficient Design and Decoding of Polar Codes , 2012, IEEE Transactions on Communications.

[9]  F. Chiaraluce,et al.  Extended Hamming product codes analytical performance evaluation for low error rate applications , 2004, IEEE Transactions on Wireless Communications.

[10]  Alexander Vardy,et al.  List decoding of polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[11]  Christian Bettstetter,et al.  Code construction and decoding of parallel concatenated tail-biting codes , 2001, IEEE Trans. Inf. Theory.

[12]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[13]  Mehrdad Valipour,et al.  On Probabilistic Weight Distribution of Polar Codes , 2013, IEEE Communications Letters.

[14]  Jing Guo,et al.  Fixed-threshold polar codes , 2013, 2013 IEEE International Symposium on Information Theory.

[15]  David Burshtein,et al.  On the application of LDPC codes to arbitrary discrete-memoryless channels , 2003, IEEE Transactions on Information Theory.

[16]  Sergio Benedetto,et al.  Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.

[17]  Bin Li,et al.  An Adaptive Successive Cancellation List Decoder for Polar Codes with Cyclic Redundancy Check , 2012, IEEE Communications Letters.

[18]  Garik Markarian,et al.  Performance of short polar codes under ML decoding , 2009 .

[19]  Ying Li,et al.  Ordered Statistic Decoding for Short Polar Codes , 2016, IEEE Communications Letters.

[20]  Marco Chiani,et al.  Bounds on the Error Probability of Block Codes over the q-Ary Erasure Channel , 2013, IEEE Transactions on Communications.

[21]  Rüdiger L. Urbanke,et al.  Polar Codes for Channel and Source Coding , 2009, ArXiv.

[22]  Kai Chen,et al.  Distance spectrum analysis of polar codes , 2014, 2014 IEEE Wireless Communications and Networking Conference (WCNC).

[23]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[24]  Ayoub Otmani,et al.  Algebraic properties of polar codes from a new polynomial formalism , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).