Numerical methods for interval and fuzzy number comparison based on the probabilistic approach and Dempster-Shafer theory

[1]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[2]  Huibert Kwakernaak,et al.  Rating and ranking of multiple-aspect alternatives using fuzzy sets , 1976, Autom..

[3]  Ronald R. Yager,et al.  A procedure for ordering fuzzy subsets of the unit interval , 1981, Inf. Sci..

[4]  Didier Dubois,et al.  Ranking fuzzy numbers in the setting of possibility theory , 1983, Inf. Sci..

[5]  Hung T. Nguyen,et al.  Uncertainty Models for Knowledge-Based Systems; A Unified Approach to the Measurement of Uncertainty , 1985 .

[6]  Hung T. Nguyen,et al.  Uncertainty Models for Knowledge-Based Systems; A Unified Approach to the Measurement of Uncertainty , 1985 .

[7]  G. Bortolan,et al.  A review of some methods for ranking fuzzy subsets , 1985 .

[8]  K. Nakamura Preference relations on a set of fuzzy utilities as a basis for decision making , 1986 .

[9]  H. Ishibuchi,et al.  Multiobjective programming in optimization of the interval objective function , 1990 .

[10]  M. Sugeno FUZZY MEASURES AND FUZZY INTEGRALS—A SURVEY , 1993 .

[11]  James M. Keller,et al.  Quantitative analysis of properties and spatial relations of fuzzy image regions , 1993, IEEE Trans. Fuzzy Syst..

[12]  Heinrich Rommelfanger,et al.  Fuzzy Decision Support-Systeme , 1994 .

[13]  J. Kacprzyk,et al.  Advances in the Dempster-Shafer theory of evidence , 1994 .

[14]  Moti Schneider,et al.  On the use of interval mathematics in fuzzy expert systems , 1994, Int. J. Intell. Syst..

[15]  S. Chanas,et al.  Multiobjective programming in optimization of interval objective functions -- A generalized approach , 1996 .

[16]  Sukhamay Kundu,et al.  Preference relation on fuzzy utilities based on fuzzy leftness relation on intervals , 1998, Proceedings Mexico-USA Collaboration in Intelligent Systems Technologies..

[17]  Stanislaw Heilpern,et al.  Representation and application of fuzzy numbers , 1997, Fuzzy Sets Syst..

[18]  Sukhamay Kundu,et al.  Min-transitivity of fuzzy leftness relationship and its application to decision making , 1997, Fuzzy Sets Syst..

[19]  G. Facchinetti,et al.  Note on ranking fuzzy triangular numbers , 1998 .

[20]  Pawel Zielinski,et al.  Ranking Fuzzy Interval Numbers in the Setting of Random Sets - Further Results , 1999, Inf. Sci..

[21]  Pascal Vasseur,et al.  Perceptual organization approach based on Dempster-Shafer theory , 1999, Pattern Recognit..

[22]  R. Yager,et al.  On ranking fuzzy numbers using valuations , 1999 .

[23]  Ronald R. Yager,et al.  Modeling Uncertainty Using Partial Information , 1999, Inf. Sci..

[24]  Ronald R. Yager,et al.  Ranking Fuzzy Numbers Using a-Weighted Valuations , 2000, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[25]  Tapan Kumar Pal,et al.  On comparing interval numbers , 2000, Eur. J. Oper. Res..

[26]  T. Denœux Modeling vague beliefs using fuzzy-valued belief structures , 2000 .

[27]  Vladik Kreinovich,et al.  Fair Division Under Interval Uncertainty , 2000, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[28]  Etienne E. Kerre,et al.  Reasonable properties for the ordering of fuzzy quantities (II) , 2001, Fuzzy Sets Syst..

[29]  Ronald R. Yager,et al.  A context-dependent method for ordering fuzzy numbers using probabilities , 2001, Inf. Sci..

[30]  Pavel V. Sevastjanov,et al.  A Constructive Numerical Method for the Comparison of Intervals , 2001, PPAM.

[31]  Dug Hun Hong,et al.  Some algebraic properties and a distance measure for interval-valued fuzzy numbers , 2002, Inf. Sci..

[32]  Pavel V. Sevastjanov,et al.  Fuzzy modeling of manufacturing and logistic systems , 2003, Math. Comput. Simul..

[33]  Vladik Kreinovich,et al.  Dirty Pages of Logarithm Tables, Lifetime of the Universe, and (Subjective) Probabilities on Finite and Infinite Intervals , 2003, Reliab. Comput..

[34]  Doheon Lee,et al.  Ranking the sequences of fuzzy values , 2004, Inf. Sci..

[35]  Adam Kasperski,et al.  A possibilistic approach to sequencing problems with fuzzy parameters , 2005, Fuzzy Sets Syst..

[36]  Jian-Bo Yang,et al.  A preference aggregation method through the estimation of utility intervals , 2005, Comput. Oper. Res..

[37]  J. N. Sheen,et al.  Fuzzy Financial Profitability Analyses of Demand Side Management Alternatives , 2005, 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific.

[38]  Pavel V. Sevastjanov,et al.  Two-objective method for crisp and fuzzy interval comparison in optimization , 2006, Comput. Oper. Res..

[39]  Saeid Abbasbandy,et al.  Ranking of fuzzy numbers by sign distance , 2006, Inf. Sci..

[40]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.