Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde?

[1]  M. Cruz-Monteagudo,et al.  Chemoinformatics profiling of ionic liquids--uncovering structure-cytotoxicity relationships with network-like similarity graphs. , 2014, Toxicological sciences : an official journal of the Society of Toxicology.

[2]  Jaime Pérez-Villanueva,et al.  Chemoinformatic characterization of activity and selectivity switches of antiprotozoal compounds. , 2014, Future medicinal chemistry.

[3]  Jürgen Bajorath,et al.  Recent progress in understanding activity cliffs and their utility in medicinal chemistry. , 2014, Journal of medicinal chemistry.

[4]  Emilio Benfenati,et al.  An alternative QSAR-based approach for predicting the bioconcentration factor for regulatory purposes. , 2014, ALTEX.

[5]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[6]  Tony R. Martinez,et al.  An instance level analysis of data complexity , 2014, Machine Learning.

[7]  Jürgen Bajorath,et al.  Prediction of Individual Compounds Forming Activity Cliffs Using Emerging Chemical Patterns , 2013, J. Chem. Inf. Model..

[8]  Jürgen Bajorath,et al.  Activity profile relationships between structurally similar promiscuous compounds. , 2013, European journal of medicinal chemistry.

[9]  J. Bajorath,et al.  Advancing the activity cliff concept , 2013 .

[10]  Jürgen Bajorath,et al.  Quantifying the Fingerprint Descriptor Dependence of Structure-Activity Relationship Information on a Large Scale , 2013, J. Chem. Inf. Model..

[11]  Clemencia Pinilla,et al.  Rapid Scanning Structure-Activity Relationships in Combinatorial Data Sets: Identification of Activity Switches , 2013, J. Chem. Inf. Model..

[12]  Maykel Cruz-Monteagudo,et al.  Evolutionary computation and QSAR research. , 2013, Current computer-aided drug design.

[13]  José L Medina-Franco,et al.  Activity Cliffs: Facts or Artifacts? , 2013, Chemical biology & drug design.

[14]  Kathrin Heikamp,et al.  Compound Pathway Model To Capture SAR Progression: Comparison of Activity Cliff-Dependent and -Independent Pathways , 2013, J. Chem. Inf. Model..

[15]  Kathrin Heikamp,et al.  Do medicinal chemists learn from activity cliffs? A systematic evaluation of cliff progression in evolving compound data sets. , 2013, Journal of medicinal chemistry.

[16]  Jürgen Bajorath,et al.  Introduction of Target Cliffs as a Concept To Identify and Describe Complex Molecular Selectivity Patterns , 2013, J. Chem. Inf. Model..

[17]  Julie Clark,et al.  Discovery of Novel Antimalarial Compounds Enabled by QSAR-Based Virtual Screening , 2013, J. Chem. Inf. Model..

[18]  Daqi Gao,et al.  Classification for Imbalanced and Overlapping Classes Using Outlier Detection and Sampling Techniques , 2013 .

[19]  Jürgen Bajorath,et al.  Activity cliffs in PubChem confirmatory bioassays taking inactive compounds into account , 2013, Journal of Computer-Aided Molecular Design.

[20]  Oscar Méndez-Lucio,et al.  Identifying Activity Cliff Generators of PPAR Ligands Using SAS Maps , 2012, Molecular informatics.

[21]  Jürgen Bajorath,et al.  Matched molecular pair analysis of small molecule microarray data identifies promiscuity cliffs and reveals molecular origins of extreme compound promiscuity. , 2012, Journal of medicinal chemistry.

[22]  Jürgen Bajorath,et al.  Identification of Multitarget Activity Ridges in High-Dimensional Bioactivity Spaces , 2012, J. Chem. Inf. Model..

[23]  José L Medina-Franco,et al.  Bioactivity landscape modeling: chemoinformatic characterization of structure-activity relationships of compounds tested across multiple targets. , 2012, Bioorganic & medicinal chemistry.

[24]  Kathrin Heikamp,et al.  Prediction of Activity Cliffs Using Support Vector Machines , 2012, J. Chem. Inf. Model..

[25]  Jürgen Bajorath,et al.  Frequency of Occurrence and Potency Range Distribution of Activity Cliffs in Bioactive Compounds , 2012, J. Chem. Inf. Model..

[26]  Jürgen Bajorath,et al.  Extending the Activity Cliff Concept: Structural Categorization of Activity Cliffs and Systematic Identification of Different Types of Cliffs in the ChEMBL Database , 2012, J. Chem. Inf. Model..

[27]  Jaime Pérez-Villanueva,et al.  Activity landscape modeling of PPAR ligands with dual-activity difference maps. , 2012, Bioorganic & medicinal chemistry.

[28]  Jürgen Bajorath,et al.  Systematic Identification and Classification of Three-Dimensional Activity Cliffs , 2012, J. Chem. Inf. Model..

[29]  Jürgen Bajorath,et al.  Modeling of activity landscapes for drug discovery , 2012, Expert opinion on drug discovery.

[30]  Jürgen Bajorath,et al.  Design of multi-target activity landscapes that capture hierarchical activity cliff distributions , 2012, Journal of Cheminformatics.

[31]  Jürgen Bajorath,et al.  MMP-Cliffs: Systematic Identification of Activity Cliffs on the Basis of Matched Molecular Pairs , 2012, J. Chem. Inf. Model..

[32]  Jürgen Bajorath,et al.  Searching for Coordinated Activity Cliffs Using Particle Swarm Optimization , 2012, J. Chem. Inf. Model..

[33]  Jürgen Bajorath,et al.  Exploration of 3D Activity Cliffs on the Basis of Compound Binding Modes and Comparison of 2D and 3D Cliffs , 2012, J. Chem. Inf. Model..

[34]  José L. Medina-Franco,et al.  Consensus Models of Activity Landscapes , 2012 .

[35]  Jürgen Bajorath,et al.  Exploring activity cliffs in medicinal chemistry. , 2012, Journal of medicinal chemistry.

[36]  Jürgen Bajorath,et al.  Exploring SAR Continuity in the Vicinity of Activity Cliffs , 2012, Chemical biology & drug design.

[37]  Jürgen Bajorath,et al.  Assessing the Confidence Level of Public Domain Compound Activity Data and the Impact of Alternative Potency Measurements on SAR Analysis , 2011, J. Chem. Inf. Model..

[38]  Tony R. Martinez,et al.  Improving classification accuracy by identifying and removing instances that should be misclassified , 2011, The 2011 International Joint Conference on Neural Networks.

[39]  Matthias Rarey,et al.  From Activity Cliffs to Target‐Specific Scoring Models and Pharmacophore Hypotheses , 2011, ChemMedChem.

[40]  Jürgen Bajorath,et al.  From Activity Cliffs to Activity Ridges: Informative Data Structures for SAR Analysis , 2011, J. Chem. Inf. Model..

[41]  Jürgen Bajorath,et al.  Comprehensive Analysis of Single‐ and Multi‐Target Activity Cliffs Formed by Currently Available Bioactive Compounds , 2011, Chemical biology & drug design.

[42]  José L. Medina-Franco,et al.  Consensus Models of Activity Landscapes with Multiple Chemical, Conformer, and Property Representations , 2011, J. Chem. Inf. Model..

[43]  Jürgen Bajorath,et al.  Similarity searching , 2011 .

[44]  Anne Mai Wassermann,et al.  Design of Multitarget Activity Landscapes That Capture Hierarchical Activity Cliff Distributions , 2011, J. Chem. Inf. Model..

[45]  Jürgen Bajorath,et al.  SAR Monitoring of Evolving Compound Data Sets Using Activity Landscapes , 2011, Journal of Chemical Information and Modeling.

[46]  Jürgen Bajorath,et al.  Computational analysis of activity and selectivity cliffs. , 2011, Methods in molecular biology.

[47]  R. Guha The ups and downs of structure-activity landscapes. , 2011, Methods in molecular biology.

[48]  D. Horvath,et al.  ISIDA Property‐Labelled Fragment Descriptors , 2010, Molecular informatics.

[49]  J. Bajorath,et al.  Activity landscape representations for structure-activity relationship analysis. , 2010, Journal of medicinal chemistry.

[50]  Alexander Tropsha,et al.  Trust, But Verify: On the Importance of Chemical Structure Curation in Cheminformatics and QSAR Modeling Research , 2010, J. Chem. Inf. Model..

[51]  Alexander Tropsha,et al.  Best Practices for QSAR Model Development, Validation, and Exploitation , 2010, Molecular informatics.

[52]  J. Bajorath,et al.  Chemical Substitutions That Introduce Activity Cliffs Across Different Compound Classes and Biological Targets , 2010, J. Chem. Inf. Model..

[53]  Jürgen Bajorath,et al.  Rationalizing Three-Dimensional Activity Landscapes and the Influence of Molecular Representations on Landscape Topology and the Formation of Activity Cliffs , 2010, J. Chem. Inf. Model..

[54]  David Rogers,et al.  Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..

[55]  Jürgen Bajorath,et al.  Molecular Scaffolds with High Propensity to Form Multi-Target Activity Cliffs , 2010, J. Chem. Inf. Model..

[56]  Scott Boyer,et al.  Evaluation of Quantitative Structure-Activity Relationship Modeling Strategies: Local and Global Models , 2010, J. Chem. Inf. Model..

[57]  Anne Mai Wassermann,et al.  SARANEA: A Freely Available Program To Mine Structure-Activity and Structure-Selectivity Relationship Information in Compound Data Sets , 2010, J. Chem. Inf. Model..

[58]  Jürgen Bajorath,et al.  From Structure–Activity to Structure–Selectivity Relationships: Quantitative Assessment, Selectivity Cliffs, and Key Compounds , 2009, ChemMedChem.

[59]  T Scior,et al.  How to recognize and workaround pitfalls in QSAR studies: a critical review. , 2009, Current medicinal chemistry.

[60]  Jürgen Bajorath,et al.  Structural Interpretation of Activity Cliffs Revealed by Systematic Analysis of Structure-Activity Relationships in Analog Series , 2009, J. Chem. Inf. Model..

[61]  Mathias Wawer,et al.  Navigating structure-activity landscapes. , 2009, Drug discovery today.

[62]  J. Bajorath,et al.  Systematic computational analysis of structure-activity relationships: concepts, challenges and recent advances. , 2009, Future medicinal chemistry.

[63]  Wendy A. Warr,et al.  ChEMBL. An interview with John Overington, team leader, chemogenomics at the European Bioinformatics Institute Outstation of the European Molecular Biology Laboratory (EMBL-EBI) , 2009, J. Comput. Aided Mol. Des..

[64]  José L. Medina-Franco,et al.  Characterization of Activity Landscapes Using 2D and 3D Similarity Methods: Consensus Activity Cliffs , 2009, J. Chem. Inf. Model..

[65]  John P. Overington ChEMBL. An interview with John Overington, team leader, chemogenomics at the European Bioinformatics Institute Outstation of the European Molecular Biology Laboratory (EMBL-EBI). Interview by Wendy A. Warr. , 2009, Journal of computer-aided molecular design.

[66]  Ovidiu Ivanciuc,et al.  Drug Design with Machine Learning , 2009, Encyclopedia of Complexity and Systems Science.

[67]  Rajarshi Guha,et al.  Assessing How Well a Modeling Protocol Captures a Structure-Activity Landscape , 2008, J. Chem. Inf. Model..

[68]  Rajarshi Guha,et al.  Structure—Activity Landscape Index: Identifying and Quantifying Activity Cliffs. , 2008 .

[69]  Prashant Doshi,et al.  Enhancing the Quality of Noisy Training Data Using a Genetic Algorithm and Prototype Selection , 2008, IC-AI.

[70]  J. Bajorath,et al.  SAR index: quantifying the nature of structure-activity relationships. , 2007, Journal of medicinal chemistry.

[71]  Jürgen Bajorath,et al.  Molecular similarity analysis uncovers heterogeneous structure-activity relationships and variable activity landscapes. , 2007, Chemistry & biology.

[72]  Xin Wen,et al.  BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities , 2006, Nucleic Acids Res..

[73]  R. Polikar,et al.  Ensemble based systems in decision making , 2006, IEEE Circuits and Systems Magazine.

[74]  Gerald M. Maggiora,et al.  On Outliers and Activity Cliffs-Why QSAR Often Disappoints , 2006, J. Chem. Inf. Model..

[75]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[76]  Nina Nikolova-Jeliazkova,et al.  QSAR Applicability Domain Estimation by Projection of the Training Set in Descriptor Space: A Review , 2005, Alternatives to laboratory animals : ATLA.

[77]  Jens Sadowski,et al.  Structure Modification in Chemical Databases , 2005 .

[78]  Ian H. Witten,et al.  Data mining in bioinformatics using Weka , 2004, Bioinform..

[79]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[80]  U. Burkard Methods for Data Analysis , 2004 .

[81]  James G. Nourse,et al.  Reoptimization of MDL Keys for Use in Drug Discovery , 2002, J. Chem. Inf. Comput. Sci..

[82]  Robert P Sheridan,et al.  Why do we need so many chemical similarity search methods? , 2002, Drug discovery today.

[83]  M. Schratzberger,et al.  Methods for data analysis of benthic samples , 2002 .

[84]  Ian Witten,et al.  Data Mining , 2000 .

[85]  Nathalie Japkowicz,et al.  The Class Imbalance Problem: Significance and Strategies , 2000 .

[86]  N. Japkowicz Learning from Imbalanced Data Sets: A Comparison of Various Strategies * , 2000 .

[87]  Schmid,et al.  "Scaffold-Hopping" by Topological Pharmacophore Search: A Contribution to Virtual Screening. , 1999, Angewandte Chemie.

[88]  David H. Wolpert,et al.  The Existence of A Priori Distinctions Between Learning Algorithms , 1996, Neural Computation.

[89]  David H. Wolpert,et al.  The Lack of A Priori Distinctions Between Learning Algorithms , 1996, Neural Computation.

[90]  Ashwin Srinivasan,et al.  Drug Design by Machine Learning , 1995, Machine Intelligence 15.

[91]  Marvin Johnson,et al.  Concepts and applications of molecular similarity , 1990 .