The control of cargo release from physically crosslinked hydrogels by crosslink dynamics.

[1]  C. Toprakcioglu,et al.  Activation energies control the macroscopic properties of physically cross-linked materials. , 2014, Angewandte Chemie.

[2]  Olli Ikkala,et al.  Healable, Stable and Stiff Hydrogels: Combining Conflicting Properties Using Dynamic and Selective Three‐Component Recognition with Reinforcing Cellulose Nanorods , 2014 .

[3]  O. Scherman,et al.  Supramolecular polymeric hydrogels. , 2012, Chemical Society reviews.

[4]  Oren A Scherman,et al.  Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness. , 2012, Journal of the American Chemical Society.

[5]  Oren A Scherman,et al.  Sustained release of proteins from high water content supramolecular polymer hydrogels. , 2012, Biomaterials.

[6]  S. Seiffert,et al.  Physical Chemistry of Supramolecular Polymer Networks , 2012 .

[7]  O. Scherman,et al.  Formation of single-chain polymer nanoparticles in water through host-guest interactions. , 2012, Angewandte Chemie.

[8]  Doo Sung Lee,et al.  Injectable Block Copolymer Hydrogels: Achievements and Future Challenges for Biomedical Applications , 2011 .

[9]  C. Barner‐Kowollik,et al.  Postpolymerization Modification of Hydroxyl-Functionalized Polymers with Isocyanates , 2011 .

[10]  Oren A Scherman,et al.  Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril. , 2010, Journal of the American Chemical Society.

[11]  C. Robinson,et al.  Correlating solution binding and ESI-MS stabilities by incorporating solvation effects in a confined cucurbit[8]uril system. , 2010, The journal of physical chemistry. B.

[12]  O. Scherman,et al.  Binding studies on CB[6] with a series of 1-alkyl-3-methylimidazolium ionic liquids in an aqueous system. , 2010, Chemistry, an Asian journal.

[13]  M. Tabaka,et al.  Scaling form of viscosity at all length-scales in poly(ethylene glycol) solutions studied by fluorescence correlation spectroscopy and capillary electrophoresis. , 2009, Physical chemistry chemical physics : PCCP.

[14]  Hsing-Wen Sung,et al.  pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility. , 2009, Biomaterials.

[15]  J. Hartgerink,et al.  Self-assembly of multidomain peptides: sequence variation allows control over cross-linking and viscoelasticity. , 2009, Biomacromolecules.

[16]  M. Lutolf Biomaterials: Spotlight on hydrogels. , 2009, Nature materials.

[17]  R. O’Reilly,et al.  Facile one pot synthesis of a range of reversible addition-fragmentation chain transfer (RAFT) agents. , 2008, Chemical communications.

[18]  Lin Yu,et al.  Injectable hydrogels as unique biomedical materials. , 2008, Chemical Society reviews.

[19]  Xian Jun Loh,et al.  Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. , 2008, Advanced drug delivery reviews.

[20]  Matthew Pilarz,et al.  Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells , 2007, Proceedings of the National Academy of Sciences.

[21]  U. Maitra,et al.  Supramolecular Gels: Functions and Uses , 2006 .

[22]  Lyle Isaacs,et al.  The Cucurbit[n]uril Family , 2005 .

[23]  Lyle Isaacs,et al.  The cucurbit[n]uril family: prime components for self-sorting systems. , 2005, Journal of the American Chemical Society.

[24]  S. Craig,et al.  Small-molecule dynamics and mechanisms underlying the macroscopic mechanical properties of coordinatively cross-linked polymer networks. , 2005, Journal of the American Chemical Society.

[25]  S. Craig,et al.  Strong means slow: dynamic contributions to the bulk mechanical properties of supramolecular networks. , 2005, Angewandte Chemie.

[26]  A. Hamilton,et al.  Water Gelation by Small Organic Molecules , 2004 .

[27]  W. Nau,et al.  Mechanism of host-guest complexation by cucurbituril. , 2004, Journal of the American Chemical Society.

[28]  Kinam Park,et al.  Environment-sensitive hydrogels for drug delivery , 2001 .

[29]  A. Hoffman Hydrogels for Biomedical Applications , 2001, Advanced drug delivery reviews.

[30]  Eunsung Lee,et al.  New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n = 5, 7, and 8) , 2000 .

[31]  Sung Wan Kim,et al.  Biodegradable block copolymers as injectable drug-delivery systems , 1997, Nature.

[32]  P. I. Lee Polymers for controlled drug delivery: Peter J. Tarcha, Ed., CRC Press, Boca Raton, FL, 1991, 286 pp., no price given , 1994 .

[33]  Nikolaos A. Peppas,et al.  PREPARATION, STRUCTURE AND DIFFUSIONAL BEHAVIOR OF HYDROGELS IN CONTROLLED RELEASE , 1993 .

[34]  N. Peppas,et al.  A simple equation for the description of solute release. III. Coupling of diffusion and relaxation , 1989 .

[35]  L. Brannon-Peppas,et al.  Solute and penetrant diffusion in swellable polymers. IX: The mechanisms of drug release from pH-sensitive swelling-controlled systems , 1989 .

[36]  Nikolaos A. Peppas,et al.  Solute diffusion in swollen membranes. IX: Scaling laws for solute diffusion in gels , 1988 .

[37]  N. Peppas,et al.  Solute and penetrant diffusion in swellable polymers. VIII: Influence of the swelling interface number on solute concentration profiles and release , 1988 .

[38]  Nicholas A. Peppas,et al.  A simple equation for description of solute release II. Fickian and anomalous release from swellable devices , 1987 .

[39]  Nicholas A. Peppas,et al.  A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs , 1987 .

[40]  Murat Guvendiren,et al.  Shear-thinning hydrogels for biomedical applications , 2012 .

[41]  S. Rowan,et al.  Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. , 2011, Nature materials.

[42]  Richard W. Baker,et al.  Controlled release: mechanisms and release. , 1974 .

[43]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .