Biomechanical surrogate modelling using stabilized vectorial greedy kernel methods

Greedy kernel approximation algorithms are successful techniques for sparse and accurate data-based modelling and function approximation. Based on a recent idea of stabilization of such algorithms in the scalar output case, we here consider the vectorial extension built on VKOGA. We introduce the so called $\gamma$-restricted VKOGA, comment on analytical properties and present numerical evaluation on data from a clinically relevant application, the modelling of the human spine. The experiments show that the new stabilized algorithms result in improved accuracy and stability over the non-stabilized algorithms.

[1]  Stefan Müller,et al.  Komplexität und Stabilität von kernbasierten Rekonstruktionsmethoden , 2009 .

[2]  Bernard Haasdonk,et al.  A novel class of stabilized greedy kernel approximation algorithms: Convergence, stability & uniform point distribution , 2021, J. Approx. Theory.

[3]  Bernard Haasdonk,et al.  Surrogate modeling of multiscale models using kernel methods , 2015 .

[4]  M. Urner Scattered Data Approximation , 2016 .

[5]  Holger Wendland,et al.  Adaptive greedy techniques for approximate solution of large RBF systems , 2000, Numerical Algorithms.

[6]  G. Santin,et al.  Kernel Methods for Surrogate Modeling , 2019, System- and Data-Driven Methods and Algorithms.

[7]  S Schmitt,et al.  A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles , 2015, Biomechanics and modeling in mechanobiology.

[8]  Bernard Haasdonk,et al.  A Vectorial Kernel Orthogonal Greedy Algorithm , 2013 .

[9]  O Röhrle,et al.  Linking continuous and discrete intervertebral disc models through homogenisation , 2013, Biomechanics and modeling in mechanobiology.

[10]  B. Haasdonk,et al.  Interpolation with uncoupled separable matrix-valued kernels. , 2018, 1807.09111.

[11]  Gregory E. Fasshauer,et al.  Kernel-based Approximation Methods using MATLAB , 2015, Interdisciplinary Mathematical Sciences.

[12]  Holger Wendland,et al.  Near-optimal data-independent point locations for radial basis function interpolation , 2005, Adv. Comput. Math..

[13]  A Rohlmann,et al.  Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. , 2014, Journal of biomechanics.

[14]  Miguel T. Silva,et al.  Structural analysis of the intervertebral discs adjacent to an interbody fusion using multibody dynamics and finite element cosimulation , 2011 .