Staircase forms and trimmed linearizations for structured matrix polynomials

We discuss the eigenvalue problem for general and structured matrix polynomials which may be singular and may have eigenvalues at infinity. We derive staircase condensed forms that allow deflation of the infinite eigenvalue and singular structure of the matrix polynomial. The remaining reduced order staircase form leads to new types of linearizations which determine the finite eigenvalues and and corresponding eigenvectors. The new linearizations also simplify the construction of structure preserving linearizations.

[1]  D. Steven Mackey,et al.  Structured Linearizations for Matrix Polynomials , 2006 .

[2]  Volker Mehrmann,et al.  Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[3]  Peter Lancaster,et al.  Lambda-matrices and vibrating systems , 2002 .

[4]  F. R. Gantmakher The Theory of Matrices , 1984 .

[5]  E. Antoniou,et al.  A new family of companion forms of polynomial matrices , 2004 .

[6]  David S. Watkins Performance of the QZ Algorithm in the Presence of Infinite Eigenvalues , 2000, SIAM J. Matrix Anal. Appl..

[7]  I. Gohberg,et al.  General theory of regular matrix polynomials and band Toeplitz operators , 1988 .

[8]  Volker Mehrmann,et al.  Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..

[9]  J. Demmel,et al.  Stably Computing the Kronecker Structure and Reducing Subspaces of Singular Pencils A-λ for Uncertain Data , 1986 .

[10]  R. C. Thompson,et al.  The characteristic polynomial of a principal subpencil of a Hermitian matrix pencil , 1976 .

[11]  R. C. Thompson,et al.  Pencils of complex and real symmetric and skew matrices , 1991 .

[12]  Volker Mehrmann,et al.  Regularization of Descriptor Systems by Derivative and Proportional State Feedback , 1992, SIAM J. Matrix Anal. Appl..

[13]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[14]  Nicholas J. Higham,et al.  The Conditioning of Linearizations of Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[15]  V. Mehrmann The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .

[16]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[17]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[18]  Nicholas J. Higham,et al.  Symmetric Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[19]  Gene H. Golub,et al.  Matrix computations , 1983 .

[20]  Volker Mehrmann,et al.  A STRUCTURED STAIRCASE ALGORITHM FOR SKEW-SYMMETRIC / SYMMETRIC , 2005 .

[21]  R. Glowinski,et al.  Numerical methods for multibody systems , 1994 .

[22]  P. Rentrop,et al.  Differential-Algebraic Equations , 2006 .

[23]  P. Lancaster,et al.  Factorization of selfadjoint matrix polynomials with constant signature , 1982 .

[24]  Volker Mehrmann,et al.  Transformation of high order linear differential-algebraic systems to first order , 2006, Numerical Algorithms.

[25]  S. Vologiannidis,et al.  Linearizations of Polynomial Matrices with Symmetries and Their Applications. , 2005, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005..

[26]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[27]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[28]  P. Dooren The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .