Multi-soliton solutions and a Bäcklund transformation for a generalized variable-coefficient higher-order nonlinear Schrödinger equation with symbolic computation

[1]  Luther Pfahler Eisenhart,et al.  A Treatise on the Differential Geometry of Curves and Surfaces , 1961, The Mathematical Gazette.

[2]  Laser pulse distortion in a nonlinear dielectric , 1967 .

[3]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[4]  R. Hirota Exact envelope‐soliton solutions of a nonlinear wave equation , 1973 .

[5]  Ryogo Hirota,et al.  A New Form of Bäcklund Transformations and Its Relation to the Inverse Scattering Problem , 1974 .

[6]  M. Wadati,et al.  Relationships among Inverse Method, Bäcklund Transformation and an Infinite Number of Conservation Laws , 1975 .

[7]  R. Hirota,et al.  N-Soliton Solutions of Model Equations for Shallow Water Waves , 1976 .

[8]  Ryogo Hirota,et al.  A Variety of Nonlinear Network Equations Generated from the Bäcklund Transformation for the Toda Lattice , 1976 .

[9]  G. Lamb Elements of soliton theory , 1980 .

[10]  H. Yuen,et al.  Quasi‐recurring energy leakage in the two‐space‐dimensional nonlinear Schrödinger equation , 1980 .

[11]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers (A) , 1980 .

[12]  和達 三樹 G. L. Lamb, Jr.: Elements of Soliton Theory, John Wiley, New York and Chichester, 1980, xiii+289ページ, 24×17cm, 8,980円(Pure and Applied Mathematics; A Wiley-Interscience Series of Texts, Monographs and Tracts). , 1981 .

[13]  J. Nimmo,et al.  The use of Backlund transformations in obtaining N-soliton solutions in Wronskian form , 1984 .

[14]  R. Stolen,et al.  Optical wave breaking of pulses in nonlinear optical fibers. , 1985, Optics letters.

[15]  J. Gordon,et al.  Theory of the soliton self-frequency shift. , 1986, Optics letters.

[16]  Alexander M. Rubenchik,et al.  Soliton stability in plasmas and hydrodynamics , 1986 .

[17]  L. Mollenauer,et al.  Discovery of the soliton self-frequency shift. , 1986, Optics letters.

[18]  A. Hasegawa,et al.  Nonlinear pulse propagation in a monomode dielectric guide , 1987 .

[19]  B. Movaghar,et al.  Electric-field-induced tunneling from self-trapped states , 1988 .

[20]  Philippe Emplit,et al.  Direct observation of optical wave breaking of picosecond pulses in nonlinear single-mode optical fibres , 1988 .

[21]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[22]  Junkichi Satsuma,et al.  New-Type of Soliton Solutions for a Higher-Order Nonlinear Schrödinger Equation , 1991 .

[23]  Hirokazu Kubota,et al.  Partial soliton communication system , 1992 .

[24]  On the standing wave solutions to a nonlocal, nonlinear Schro¨dinger equation occurring in plasma physics , 1993 .

[25]  Xing-Biao Hu Nonlinear superposition formulae for the differential-difference analogue of the KdV equation and two-dimensional Toda equation , 1994 .

[26]  T. Kinoshita,et al.  Optical Soliton Transmission Experiment in a Comb-Like Dispersion Profiled Fiber Loop with Amplifier Spacing Much Longer than the Dispersion Distance , 1997 .

[27]  D. Mihalache,et al.  Painlevé analysis and bright solitary waves of the higher-order nonlinear Schrödinger equation containing third-order dispersion and self-steepening term , 1997 .

[28]  Gopal Das,et al.  Response to “Comment on ‘A new mathematical approach for finding the solitary waves in dusty plasma’ ” [Phys. Plasmas 6, 4392 (1999)] , 1999 .

[29]  K. Suzuki,et al.  Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  Jian Zhang Stability of Attractive Bose–Einstein Condensates , 2000 .

[31]  N. Armesto,et al.  Nuclear structure functions and heavy flavour leptoproduction off the nucleus at small x in perturbative QCD , 2001, hep-ph/0107114.

[32]  K. Porsezian,et al.  Propagation of dark solitons with higher-order effects in optical fibers. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Zhenya Yan,et al.  Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+1)-dimensional spaces , 2001 .

[34]  B. Tian,et al.  Variable-coefficient balancing-act method and variable-coefficient KdV equation from fluid dynamics and plasma physics , 2001 .

[35]  Guosheng Zhou,et al.  Soliton interaction under the influence of higher-order effects , 2002 .

[36]  Guosheng Zhou,et al.  Dark soliton solution for higher-order nonlinear Schrödinger equation with variable coefficients , 2004 .

[37]  Guosheng Zhou,et al.  Exact multisoliton solutions of the higher-order nonlinear Schrödinger equation with variable coefficients. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  N. Akhmediev,et al.  On the solution of multicomponent nonlinear Schrödinger equations , 2004 .

[39]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[40]  M. P. Barnett,et al.  Symbolic calculation in chemistry: Selected examples , 2004 .

[41]  Optical Solitary Waves in the Generalized Higher Order Nonlinear Schrödinger Equation , 2005 .

[42]  Bo Tian,et al.  Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation , 2005 .

[43]  Bo Tian,et al.  Comment on ``Exact solutions of cylindrical and spherical dust ion acoustic waves'' [Phys. Plasmas 10, 4162 (2003)] , 2005 .

[44]  Bo Tian,et al.  Spherical nebulons and Bäcklund transformation for a space or laboratory un-magnetized dusty plasma with symbolic computation , 2005 .

[45]  Bo Tian,et al.  Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers [rapid communication] , 2005 .

[46]  Bo Tian,et al.  Cylindrical nebulons, symbolic computation and Bäcklund transformation for the cosmic dust acoustic waves , 2005 .

[47]  Bo Tian,et al.  Transformations for a generalized variable-coefficient nonlinear Schrödinger model from plasma physics, arterial mechanics and optical fibers with symbolic computation , 2005 .

[48]  Dynamical stabilization of solitons in cubic-quintic nonlinear Schrödinger model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Deng-yuan Chen,et al.  Soliton solutions to the 3rd nonisospectral AKNS system , 2006 .

[50]  Bo Tian,et al.  Cylindrical Kadomtsev–Petviashvili model, nebulons and symbolic computation for cosmic dust ion-acoustic waves , 2006 .

[51]  Bo Tian,et al.  (3+1)-dimensional generalized Johnson model for cosmic dust-ion-acoustic nebulons with symbolic computation , 2006 .

[52]  C. Dai,et al.  New solitons for the Hirota equation and generalized higher-order nonlinear Schrödinger equation with variable coefficients , 2006 .

[53]  Bo Tian,et al.  Cosmic dust-ion-acoustic waves, spherical modified Kadomtsev-Petviashvili model, and symbolic computation , 2006 .

[54]  Bo Tian,et al.  Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: New transformation with burstons, brightons and symbolic computation , 2006 .

[55]  Bo Tian,et al.  On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations , 2007 .

[56]  Woo-Pyo Hong,et al.  Comment on: “Spherical Kadomtsev Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation” [Phys. Lett. A 340 (2005) 243] , 2007 .

[57]  Tao Xu,et al.  Symbolic computation on generalized Hopf–Cole transformation for a forced Burgers model with variable coefficients from fluid dynamics , 2007 .

[58]  B. Tian,et al.  Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas , 2007 .

[59]  Bo Tian,et al.  Reply to: “Comment on: ‘Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation’ ” [Phys. Lett. A 361 (2007) 520] , 2007 .

[60]  Tao Xu,et al.  Symbolic-computation construction of transformations for a more generalized nonlinear Schrödinger equation with applications in inhomogeneous plasmas, optical fibers, viscous fluids and Bose-Einstein condensates , 2007 .

[61]  Bo Tian,et al.  Interactions of bright solitons for the (2+1)-dimensional coupled nonlinear Schrödinger equations from optical fibres with symbolic computation , 2007 .