Community Detection Across Emerging Quantum Architectures

One of the roadmap plans for quantum computers is an integration within HPC ecosystems assigning them a role of accelerators for a variety of computationally hard tasks. However, in the near term, quantum hardware will be in a constant state of change. Heading towards solving real-world problems, we advocate development of portable, architecture-agnostic hybrid quantum-classical frameworks and demonstrate one for the community detection problem evaluated using quantum annealing and gate-based universal quantum computation paradigms.

[1]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.

[2]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[3]  Angelo Bifone,et al.  Community detection in weighted brain connectivity networks beyond the resolution limit , 2016, NeuroImage.

[4]  Hartmut Neven,et al.  Optimizing Variational Quantum Algorithms using Pontryagin's Minimum Principle , 2016, ArXiv.

[5]  Catherine C. McGeoch Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice , 2014, Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice.

[6]  Christian F. A. Negre,et al.  Graph Partitioning using Quantum Annealing on the D-Wave System , 2017, ArXiv.

[7]  U. Brandes,et al.  Maximizing Modularity is hard , 2006, physics/0608255.

[8]  Blake R. Johnson,et al.  Unsupervised Machine Learning on a Hybrid Quantum Computer , 2017, 1712.05771.

[9]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[10]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[11]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Andreas Noack,et al.  Multilevel local search algorithms for modularity clustering , 2011, JEAL.

[13]  Allan Kuchinsky,et al.  GLay: community structure analysis of biological networks , 2010, Bioinform..

[14]  Sven Leyffer,et al.  Fast response to infection spread and cyber attacks on large-scale networks , 2012, J. Complex Networks.

[15]  Angelo Bifone,et al.  Hierarchical organization of functional connectivity in the mouse brain: a complex network approach , 2016, Scientific Reports.

[16]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[17]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[18]  David Von Dollen,et al.  Traffic Flow Optimization Using a Quantum Annealer , 2017, Front. ICT.

[19]  William W. Hager,et al.  A multilevel bilinear programming algorithm for the vertex separator problem , 2018, Comput. Optim. Appl..

[20]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[21]  M. W. Johnson,et al.  Phase transitions in a programmable quantum spin glass simulator , 2018, Science.

[22]  Velimir V. Vesselinov,et al.  Nonnegative/Binary matrix factorization with a D-Wave quantum annealer , 2017, PloS one.

[23]  Andris Ambainis,et al.  Quantum Speedups for Exponential-Time Dynamic Programming Algorithms , 2018, SODA.

[24]  Mark W. Johnson,et al.  Observation of topological phenomena in a programmable lattice of 1,800 qubits , 2018, Nature.

[25]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[26]  J. Ignacio Cirac,et al.  Computational speedups using small quantum devices , 2018, Physical review letters.

[27]  Alán Aspuru-Guzik,et al.  qHiPSTER: The Quantum High Performance Software Testing Environment , 2016, ArXiv.

[28]  Jérôme Kunegis,et al.  KONECT: the Koblenz network collection , 2013, WWW.