A general framework for data-driven uncertainty quantification under complex input dependencies using vine copulas

Abstract Systems subject to uncertain inputs produce uncertain responses. Uncertainty quantification (UQ) deals with the estimation of statistics of the system response, given a computational model of the system and a probabilistic model of its inputs. In engineering applications it is common to assume that the inputs are mutually independent or coupled by a Gaussian or elliptical dependence structure (copula). In this paper we overcome such limitations by modelling the dependence structure of multivariate inputs through vine copulas. Vine copulas are models of multivariate dependence built from simpler pair-copulas. The vine representation is flexible enough to capture complex dependencies. This paper formalises the framework needed to build vine copula models of multivariate inputs and to combine them with virtually any UQ method. The framework allows for fully automated, data-driven inference of the probabilistic input model on available input data. The procedure is exemplified on two finite element models of truss structures, both subject to inputs with non-Gaussian dependence structures. For each case, we analyse the moments of the model response (using polynomial chaos expansions), and perform structural reliability analysis to calculate the probability of failure of the system (using the first order reliability method and importance sampling). Reference solutions are obtained by Monte Carlo simulation. The results show that, while the Gaussian assumption yields biased statistics, the vine copula representation achieves significantly more precise estimates, even when its structure needs to be fully inferred from a limited amount of observations.

[1]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[2]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[3]  Claudia Czado,et al.  Pair-Copula Constructions of Multivariate Copulas , 2010 .

[4]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[5]  Marco Scarsini,et al.  On measures of concordance , 1984 .

[6]  Anne Dutfoy,et al.  Do Rosenblatt and Nataf isoprobabilistic transformations really differ , 2009 .

[7]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study , 2007 .

[8]  Solomon Tesfamariam,et al.  Multi-variate seismic demand modelling using copulas: Application to non-ductile reinforced concrete frame in Victoria, Canada , 2015 .

[9]  Ulf Schepsmeier,et al.  Efficient information based goodness-of-fit tests for vine copula models with fixed margins: A comprehensive review , 2015, J. Multivar. Anal..

[10]  Robert E. Melchers,et al.  Structural Reliability: Analysis and Prediction , 1987 .

[11]  R. Montes-Iturrizaga,et al.  Reliability analysis of mooring lines using copulas to model statistical dependence of environmental variables , 2016 .

[12]  ScienceDirect Computational statistics & data analysis , 1983 .

[13]  Kjersti Aas,et al.  Pair-Copula Constructions for Financial Applications: A Review , 2016 .

[14]  Giuseppe Passoni,et al.  A multivariate model of sea storms using copulas , 2007 .

[15]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[16]  D. Kurowicka,et al.  Distribution - Free Continuous Bayesian Belief Nets , 2004 .

[17]  Claudia Czado,et al.  Selecting and estimating regular vine copulae and application to financial returns , 2012, Comput. Stat. Data Anal..

[18]  Stefano Marelli,et al.  UQLab: a framework for uncertainty quantification in MATLAB , 2014 .

[19]  R. Rackwitz,et al.  Quadratic Limit States in Structural Reliability , 1979 .

[20]  Jean-David Fermanian,et al.  An Overview of the Goodness-of-Fit Test Problem for Copulas , 2012, 1211.4416.

[21]  Irmela Zentner,et al.  A general framework for the estimation of analytical fragility functions based on multivariate probability distributions , 2017 .

[22]  Katsuichiro Goda,et al.  Statistical modeling of joint probability distribution using copula: Application to peak and permanent displacement seismic demands , 2010 .

[23]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[24]  Hans Manner,et al.  Estimation and Model Selection of Copulas with an Application to Exchange Rates , 2007 .

[25]  Lutz F. Gruber,et al.  Sequential Bayesian Model Selection of Regular Vine Copulas , 2015, 1512.00976.

[26]  Heng Li,et al.  Towards reliability evaluation involving correlated multivariates under incomplete probability information: A reconstructed joint probability distribution for isoprobabilistic transformation , 2017 .

[27]  Anne Dutfoy,et al.  A generalization of the Nataf transformation to distributions with elliptical copula , 2009 .

[28]  Nils Lid Hjort,et al.  The Copula Information Criteria , 2014 .

[29]  M. D. Taylor Multivariate measures of concordance , 2007 .

[30]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[31]  Claudia Czado,et al.  Simplified pair copula constructions - Limitations and extensions , 2013, J. Multivar. Anal..

[32]  Fan Wang,et al.  System reliability under prescribed marginals and correlations: Are we correct about the effect of correlations? , 2017, Reliab. Eng. Syst. Saf..

[33]  Claudia Czado,et al.  Model selection for discrete regular vine copulas , 2017, Comput. Stat. Data Anal..

[34]  Iason Papaioannou,et al.  MCMC algorithms for Subset Simulation , 2015 .

[35]  Rebecca Campbell,et al.  A Comparison of Three Methods , 2003 .

[36]  Ulf Schepsmeier,et al.  Derivatives and Fisher information of bivariate copulas , 2014 .

[37]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[38]  A. M. Hasofer,et al.  Exact and Invariant Second-Moment Code Format , 1974 .

[39]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[40]  Siamak Talatahari,et al.  Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures , 2009 .

[41]  Zheng Wei,et al.  Parallel Computing for Copula Parameter Estimation with Big Data: A Simulation Study , 2016 .

[42]  Michael Smith,et al.  ABAQUS/Standard User's Manual, Version 6.9 , 2009 .

[43]  Claudia Czado,et al.  Pair Copula Constructions for Multivariate Discrete Data , 2012 .

[44]  Fan Wang,et al.  Stochastic response surface method for reliability problems involving correlated multivariates with non-Gaussian dependence structure: Analysis under incomplete probability information , 2017 .

[45]  M. Lemaire,et al.  Stochastic finite element: a non intrusive approach by regression , 2006 .

[46]  Min Chen,et al.  A copula-based approach for estimating the travel time reliability of urban arterial , 2017 .

[47]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[48]  Roger Ghanem,et al.  Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration , 1998 .

[49]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[50]  R. Rackwitz,et al.  First-order concepts in system reliability , 1982 .

[51]  J. Beck,et al.  Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation , 2001 .

[52]  Ulf Schepsmeier Maximum likelihood estimation of C-vine pair-copula constructions based on bivariate copulas from different families , 2010 .

[53]  Kjersti Aas,et al.  On the simplified pair-copula construction - Simply useful or too simplistic? , 2010, J. Multivar. Anal..

[54]  Jonathan A. Tawn,et al.  Bivariate extreme value theory: Models and estimation , 1988 .

[55]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[56]  Khachik Sargsyan,et al.  Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection , 2014, J. Comput. Phys..

[57]  Fabian Spanhel,et al.  The partial copula: Properties and associated dependence measures , 2015, 1511.06665.

[58]  Alberto Lamberti,et al.  Coastal flooding: A copula based approach for estimating the joint probability of water levels and waves , 2015 .

[59]  H. Joe Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .

[60]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[61]  Henrik O. Madsen,et al.  Structural Reliability Methods , 1996 .

[62]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[63]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[64]  H. Joe Dependence Modeling with Copulas , 2014 .

[65]  A. Kiureghian,et al.  STRUCTURAL RELIABILITY UNDER INCOMPLETE PROBABILITY INFORMATION , 1986 .

[66]  Hermann G. Matthies,et al.  Numerical Methods and Smolyak Quadrature for Nonlinear Stochastic Partial Differential Equations , 2003 .