Practical and unconditionally secure spacetime-constrained oblivious transfer

Spacetime-constrained oblivious transfer (SCOT) extends the fundamental primitive of oblivious transfer to Minkowski space. SCOT and location oblivious data transfer (LODT) are the only known cryptographic tasks with classical inputs and outputs for which unconditional security needs both quantum theory and relativity. We give an unconditionally secure SCOT protocol that, contrasting previous SCOT and LODT protocols, is practical to implement with current technology, where distant agents need only communicate classical information, while quantum communication occurs at a single location. We also show that our SCOT protocol can be used to implement unconditionally secure quantum relativistic bit commitment.

[1]  M. M. al-Rifaie,et al.  Introduction to Coding , 2020, The Art of Coding.

[2]  A. Falcon Physics I.1 , 2018 .

[3]  Damian Pitalua Garcia Spacetime-constrained oblivious transfer , 2016 .

[4]  S. Wehner,et al.  A monogamy-of-entanglement game with applications to device-independent quantum cryptography , 2012, 1210.4359.

[5]  A. Kent Quantum tasks in Minkowski space , 2012, 1204.4022.

[6]  H. Buhrman,et al.  Complete Insecurity of Quantum Protocols for Classical Two-Party Computation , 2012, Physical review letters.

[7]  Adrian Kent,et al.  Unconditionally Secure Bit Commitment by Transmitting Measurement Outcomes , 2011, Physical review letters.

[8]  Adrian Kent,et al.  Location-Oblivious Data Transfer with Flying Entangled Qudits , 2011, ArXiv.

[9]  Adrian Kent,et al.  Private randomness expansion with untrusted devices , 2010, 1011.4474.

[10]  Iordanis Kerenidis,et al.  Lower bounds for quantum oblivious transfer , 2010, Quantum Inf. Comput..

[11]  Roger Colbeck,et al.  Quantum And Relativistic Protocols For Secure Multi-Party Computation , 2009, 0911.3814.

[12]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[13]  C. Mochon Quantum weak coin flipping with arbitrarily small bias , 2007, 0711.4114.

[14]  Roger Colbeck,et al.  The Impossibility Of Secure Two-Party Classical Computation , 2007, ArXiv.

[15]  Adrian Kent,et al.  Variable Bias Coin Tossing , 2005, ArXiv.

[16]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[17]  B. Terhal Is entanglement monogamous? , 2003, IBM J. Res. Dev..

[18]  Adrian Kent,et al.  Unconditionally Secure Bit Commitment , 1998, quant-ph/9810068.

[19]  Adrian Kent,et al.  Coin Tossing is Strictly Weaker than Bit Commitment , 1998, quant-ph/9810067.

[20]  Hoi-Kwong Lo,et al.  Insecurity of Quantum Secure Computations , 1996, ArXiv.

[21]  D. Mayers Unconditionally secure quantum bit commitment is impossible , 1996, quant-ph/9605044.

[22]  Hoi-Kwong Lo,et al.  Is Quantum Bit Commitment Really Possible? , 1996, ArXiv.

[23]  Ron M. Roth,et al.  Introduction to Coding Theory , 2019, Discrete Mathematics.

[24]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[25]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[26]  Oded Goldreich,et al.  A randomized protocol for signing contracts , 1985, CACM.

[27]  D. Dieks Communication by EPR devices , 1982 .

[28]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[29]  J. S. BELLt ON THE EINSTEIN PODOLSKY ROSEN PARADOX* , 2017 .

[30]  J'anos Simon,et al.  Proceedings of the twentieth annual ACM symposium on Theory of computing , 1988, STOC 1988.