Structural Convergence between Cryo-EM and NMR Reveals Intersubunit Interactions Critical for HIV-1 Capsid Function

Mature HIV-1 particles contain conical-shaped capsids that enclose the viral RNA genome and perform essential functions in the virus life cycle. Previous structural analysis of two- and three-dimensional arrays of the capsid protein (CA) hexamer revealed three interfaces. Here, we present a cryoEM study of a tubular assembly of CA and a high-resolution NMR structure of the CA C-terminal domain (CTD) dimer. In the solution dimer structure, the monomers exhibit different relative orientations compared to previous X-ray structures. The solution structure fits well into the EM density map, suggesting that the dimer interface is retained in the assembled CA. We also identified a CTD-CTD interface at the local three-fold axis in the cryoEM map and confirmed its functional importance by mutagenesis. In the tubular assembly, CA intermolecular interfaces vary slightly, accommodating the asymmetry present in tubes. This provides the necessary plasticity to allow for controlled virus capsid dis/assembly.

[1]  Edward H Egelman,et al.  The iterative helical real space reconstruction method: surmounting the problems posed by real polymers. , 2007, Journal of structural biology.

[2]  Wesley I. Sundquist,et al.  Assembly Properties of the Human Immunodeficiency Virus Type 1 CA Protein , 2004, Journal of Virology.

[3]  L. Mueller,et al.  Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions , 1998, Nature Structural Biology.

[4]  John E. Johnson,et al.  The role of subunit hinges and molecular "switches" in the control of viral capsid polymorphism. , 2006, Journal of structural biology.

[5]  P. Prevelige,et al.  Identification of novel interactions in HIV-1 capsid protein assembly by high-resolution mass spectrometry. , 2003, Journal of molecular biology.

[6]  Ad Bax,et al.  Methodological advances in protein NMR , 1993 .

[7]  R. Shin,et al.  Solution structure of a double mutant of the carboxy-terminal dimerization domain of the HIV-1 capsid protein. , 2008, Biochemistry.

[8]  Marc C. Johnson,et al.  The stoichiometry of Gag protein in HIV-1 , 2004, Nature Structural &Molecular Biology.

[9]  Gottfried Otting,et al.  Alignment of Biological Macromolecules in Novel Nonionic Liquid Crystalline Media for NMR Experiments , 2000 .

[10]  Wesley I. Sundquist,et al.  Functional Surfaces of the Human Immunodeficiency Virus Type 1 Capsid Protein , 2003, Journal of Virology.

[11]  M. G. Mateu,et al.  Flexibility in HIV-1 assembly subunits: solution structure of the monomeric C-terminal domain of the capsid protein. , 2007, Biophysical journal.

[12]  Torsten Herrmann,et al.  Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. , 2002, Journal of molecular biology.

[13]  Ad Bax,et al.  Prediction of Sterically Induced Alignment in a Dilute Liquid Crystalline Phase: Aid to Protein Structure Determination by NMR , 2000 .

[14]  W. Sundquist,et al.  Implications for viral capsid assembly from crystal structures of HIV-1 Gag(1-278) and CA(N)(133-278). , 2006, Biochemistry.

[15]  G. Wagner,et al.  Domain-swapped dimerization of the HIV-1 capsid C-terminal domain , 2007, Proceedings of the National Academy of Sciences.

[16]  C. Hutchison,et al.  Cleavage of HIV-1 gag polyprotein synthesized in vitro: sequential cleavage by the viral protease. , 1989, AIDS research and human retroviruses.

[17]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[18]  W. Sundquist,et al.  Crystal Structure of Human Cyclophilin A Bound to the Amino-Terminal Domain of HIV-1 Capsid , 1996, Cell.

[19]  Wesley I. Sundquist,et al.  Image reconstructions of helical assemblies of the HIV-1 CA protein , 2022 .

[20]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[21]  K. Yonekura,et al.  Structure determination of tubular crystals of membrane proteins. II. Averaging of tubular crystals of different helical classes. , 2000, Ultramicroscopy.

[22]  A. Bax,et al.  Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. , 1998, Journal of magnetic resonance.

[23]  A. Brünger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures , 1992, Nature.

[24]  Hans-Georg Kräusslich,et al.  The HIV-1 capsid protein C-terminal domain in complex with a virus assembly inhibitor , 2005, Nature Structural &Molecular Biology.

[25]  W Chiu,et al.  EMAN: semiautomated software for high-resolution single-particle reconstructions. , 1999, Journal of structural biology.

[26]  Alasdair C. Steven,et al.  Visualization of a Missing Link in Retrovirus Capsid Assembly , 2009, Nature.

[27]  W. Sundquist,et al.  Biological Crystallography Structures of the Hiv-1 Capsid Protein Dimerization Domain at 2.6 a Ê Resolution , 2022 .

[28]  C. Aiken,et al.  A Mutation in Alpha Helix 3 of CA Renders Human Immunodeficiency Virus Type 1 Cyclosporin A Resistant and Dependent: Rescue by a Second-Site Substitution in a Distal Region of CA , 2007, Journal of Virology.

[29]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[30]  T. Hope,et al.  HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[31]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[32]  K. Yonekura,et al.  Structure determination of tubular crystals of membrane proteins. IV. Distortion correction and its combined application with real-space averaging and solvent flattening. , 2007, Ultramicroscopy.

[33]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[34]  V. Vogt,et al.  A molecular switch required for retrovirus assembly participates in the hexagonal immature lattice , 2008, The EMBO journal.

[35]  Wesley I. Sundquist,et al.  Formation of a Human Immunodeficiency Virus Type 1 Core of Optimal Stability Is Crucial for Viral Replication , 2002, Journal of Virology.

[36]  Daniel Thomas,et al.  Further evidence for hexagonal organization of HIV gag protein in prebudding assemblies and immature virus-like particles. , 1998, Journal of structural biology.

[37]  M. Summers,et al.  Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein , 2002, Nature Structural Biology.

[38]  Anchi Cheng,et al.  Structure of Full-Length HIV-1 CA: A Model for the Mature Capsid Lattice , 2007, Cell.

[39]  W. Sundquist,et al.  Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. , 1997, Science.

[40]  C. Griesinger,et al.  A simultaneous 15N,1H- and 13C,1H-HSQC with sensitivity enhancement and a heteronuclear gradient echo , 1995, Journal of biomolecular NMR.

[41]  D. A. Bosco,et al.  Catalysis and binding of cyclophilin A with different HIV-1 capsid constructs. , 2004, Biochemistry.

[42]  S. Cusack,et al.  Head‐to‐tail dimers and interdomain flexibility revealed by the crystal structure of HIV‐1 capsid protein (p24) complexed with a monoclonal antibody Fab , 1999, The EMBO journal.

[43]  Christopher L. Fillmore,et al.  Electron cryotomography of immature HIV‐1 virions reveals the structure of the CA and SP1 Gag shells , 2007, The EMBO journal.

[44]  W. Sundquist,et al.  Assembly and analysis of conical models for the HIV-1 core. , 1999, Science.

[45]  Carol Carter,et al.  Crystal structure of dimeric HIV-1 capsid protein , 1996, Nature Structural Biology.

[46]  L. Kay,et al.  A pulsed field gradient isotope‐filtered 3D 13C HMQC‐NOESY experiment for extracting intermolecular NOE contacts in molecular complexes , 1994, FEBS letters.

[47]  J. Culp,et al.  Characterization of HIV‐1 p24 self‐association using analytical affinity chromatography , 1992, Proteins.

[48]  Charles D Schwieters,et al.  The Xplor-NIH NMR molecular structure determination package. , 2003, Journal of magnetic resonance.

[49]  J. Briggs,et al.  Structural organization of authentic, mature HIV‐1 virions and cores , 2003, The EMBO journal.

[50]  I. Taylor,et al.  High-resolution structure of a retroviral capsid hexameric amino-terminal domain , 2004, Nature.

[51]  Mark Yeager,et al.  X-Ray Structures of the Hexameric Building Block of the HIV Capsid , 2009, Cell.

[52]  A M Gronenborn,et al.  Determining the structures of large proteins and protein complexes by NMR. , 1998, Trends in biotechnology.

[53]  C. Aiken Cell-free assays for HIV-1 uncoating. , 2009, Methods in molecular biology.

[54]  N. Grigorieff,et al.  High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus. , 2007, Journal of molecular biology.