Podocyte-specific deletion of ubiquitin carboxyl-terminal hydrolase L1 causes podocyte injury by inducing endoplasmic reticulum stress

[1]  R. Korstanje,et al.  Using Genetic and Species Diversity to Tackle Kidney Disease. , 2020, Trends in genetics : TIG.

[2]  Sylvia E. Le Dévédec,et al.  Deubiquitinase Activity Profiling Identifies UCHL1 as a Candidate Oncoprotein That Promotes TGFβ-Induced Breast Cancer Metastasis , 2019, Clinical Cancer Research.

[3]  Maruf M. U. Ali,et al.  UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor , 2019, Nature Structural & Molecular Biology.

[4]  F. Urano,et al.  Discovery of endoplasmic reticulum calcium stabilizers to rescue ER-stressed podocytes in nephrotic syndrome , 2019, Proceedings of the National Academy of Sciences.

[5]  Markus M. Rinschen,et al.  Ubiquitin C-terminal hydrolase L1 (UCH-L1) loss causes neurodegeneration by altering protein turnover in the first postnatal weeks , 2019, Proceedings of the National Academy of Sciences.

[6]  S. S. Reddy,et al.  Ubiquitin‐proteasome system and ER stress in the brain of diabetic rats , 2018, Journal of cellular biochemistry.

[7]  E. Daugas,et al.  Autoantibodies against podocytic UCHL1 are associated with idiopathic nephrotic syndrome relapses and induce proteinuria in mice. , 2018, Journal of autoimmunity.

[8]  A. Dillin,et al.  The UPRER: Sensor and Coordinator of Organismal Homeostasis. , 2017, Molecular cell.

[9]  J. Henley,et al.  Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction , 2016, The Biochemical journal.

[10]  C. Muñoz-Pinedo,et al.  Cell death induced by endoplasmic reticulum stress , 2016, The FEBS journal.

[11]  M. Nagata,et al.  Podocyte injury and its consequences. , 2016, Kidney international.

[12]  T. Madhusudhan,et al.  Defective podocyte insulin signalling through p85-XBP1 promotes ATF6-dependent maladaptive ER-stress response in diabetic nephropathy , 2015, Nature Communications.

[13]  M. Tatham,et al.  Ubiquitin C-terminal hydrolases cleave isopeptide- and peptide-linked ubiquitin from structured proteins but do not edit ubiquitin homopolymers , 2014, The Biochemical journal.

[14]  O. Walker,et al.  Versatile Roles of K63-Linked Ubiquitin Chains in Trafficking , 2014, Cells.

[15]  S. Balabanov,et al.  UCH-L1 induces podocyte hypertrophy in membranous nephropathy by protein accumulation. , 2014, Biochimica et biophysica acta.

[16]  Yunling Luo,et al.  Down-Regulation of PERK-ATF4-CHOP Pathway by Astragaloside IV is Associated with the Inhibition of Endoplasmic Reticulum Stress-Induced Podocyte Apoptosis in Diabetic Rats , 2014, Cellular Physiology and Biochemistry.

[17]  Y. Kikkawa,et al.  Laminin β2 gene missense mutation produces endoplasmic reticulum stress in podocytes. , 2013, Journal of the American Society of Nephrology : JASN.

[18]  R. Kaufman,et al.  ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death , 2013, Nature Cell Biology.

[19]  P. Walter,et al.  The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation , 2011, Science.

[20]  R. Rizza,et al.  β-Cell Dysfunctional ERAD/Ubiquitin/Proteasome System in Type 2 Diabetes Mediated by Islet Amyloid Polypeptide–Induced UCH-L1 Deficiency , 2010, Diabetes.

[21]  P. Sutovsky,et al.  Role of Ubiquitin C-Terminal Hydrolase-L1 in Antipolyspermy Defense of Mammalian Oocytes1 , 2010, Biology of reproduction.

[22]  Ian N. M. Day,et al.  UCHL1 (PGP 9.5): Neuronal biomarker and ubiquitin system protein , 2010, Progress in Neurobiology.

[23]  E. Masliah,et al.  Regulation of Synaptic Structure by Ubiquitin C-Terminal Hydrolase L1 , 2009, The Journal of Neuroscience.

[24]  A. Sawa,et al.  Proteomic and histochemical analysis of proteins involved in the dying-back-type of axonal degeneration in the gracile axonal dystrophy (gad) mouse , 2009, Neurochemistry International.

[25]  Qi Chen,et al.  UCH‐L1 expression of podocytes in diseased glomeruli and in vitro , 2009, The Journal of pathology.

[26]  S. Shankland,et al.  Inducible rodent models of acquired podocyte diseases. , 2009, American journal of physiology. Renal physiology.

[27]  S. Shankland,et al.  The podocyte's response to injury: role in proteinuria and glomerulosclerosis. , 2006, Kidney international.

[28]  Rieko Setsuie,et al.  Accumulation of β- and γ-synucleins in the ubiquitin carboxyl-terminal hydrolase L1-deficient gad mouse , 2004, Brain Research.

[29]  R. Wiggins,et al.  Evaluation of a thick and thin section method for estimation of podocyte number, glomerular volume, and glomerular volume per podocyte in rat kidney with Wilms' tumor-1 protein used as a podocyte nuclear marker. , 2003, Journal of the American Society of Nephrology : JASN.

[30]  Kaori Nishikawa,et al.  Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. , 2003, Human molecular genetics.

[31]  P. Lansbury,et al.  The UCH-L1 Gene Encodes Two Opposing Enzymatic Activities that Affect α-Synuclein Degradation and Parkinson's Disease Susceptibility , 2002, Cell.

[32]  Y. Tomino,et al.  Protein gene product 9.5 is selectively localized in parietal epithelial cells of Bowman's capsule in the rat kidney. , 2000, Journal of the American Society of Nephrology : JASN.

[33]  Hiderou Yoshida,et al.  ATF6 Activated by Proteolysis Binds in the Presence of NF-Y (CBF) Directly to the cis-Acting Element Responsible for the Mammalian Unfolded Protein Response , 2000, Molecular and Cellular Biology.

[34]  K. Kikuchi,et al.  Identification of soluble interleukin-4 receptor in rat glomerular epithelial cells(1). , 1999, Biochimica et biophysica acta.

[35]  Takayuki Harada,et al.  Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice , 1999, Nature Genetics.

[36]  N. Ichihara,et al.  Axonal degeneration promotes abnormal accumulation of amyloid β-protein in ascending gracile tract of gracile axonal dystrophy (GAD) mouse , 1995, Brain Research.

[37]  J. Reichelt,et al.  Ubiquitin C-Terminal Hydrolase L1 is required for regulated protein degradation through the ubiquitin proteasome system in kidney. , 2018, Kidney international.

[38]  K. Wada,et al.  Accumulation of beta- and gamma-synucleins in the ubiquitin carboxyl-terminal hydrolase L1-deficient gad mouse. , 2004, Brain research.