Frame-based elastic models

We present a new type of deformable model which combines the realism of physically-based continuum mechanics models and the usability of frame-based skinning methods. The degrees of freedom are coordinate frames. In contrast with traditional skinning, frame positions are not scripted but move in reaction to internal body forces. The displacement field is smoothly interpolated using dual quaternion blending. The deformation gradient and its derivatives are computed at each sample point of a deformed object and used in the equations of Lagrangian mechanics to achieve physical realism. This allows easy and very intuitive definition of the degrees of freedom of the deformable object. The meshless discretization allows on-the-fly insertion of frames to create local deformations where needed. We formulate the dynamics of these models in detail and describe some precomputations that can be used for speed. We show that our method is effective for behaviors ranging from simple unimodal deformations to complex realistic deformations comparable with Finite Element simulations. To encourage its use, the software will be freely available in the simulation platform SOFA.

[1]  M. Gross,et al.  Unified simulation of elastic rods, shells, and solids , 2010, ACM Trans. Graph..

[2]  Eitan Grinspun,et al.  CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..

[3]  Olga Sorkine-Hornung,et al.  Context‐Aware Skeletal Shape Deformation , 2007, Comput. Graph. Forum.

[4]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, SIGGRAPH 2007.

[5]  Mathieu Desbrun,et al.  Dynamic real-time deformations using space & time adaptive sampling , 2001, SIGGRAPH.

[6]  BotschMario,et al.  Flexible simulation of deformable models using discontinuous Galerkin FEM , 2009 .

[7]  Markus H. Gross,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2008) Flexible Simulation of Deformable Models Using Discontinuous Galerkin Fem , 2022 .

[8]  Markus H. Gross,et al.  Polyhedral Finite Elements Using Harmonic Basis Functions , 2008, Comput. Graph. Forum.

[9]  Ronald Fedkiw,et al.  Tetrahedral and hexahedral invertible finite elements , 2006, Graph. Model..

[10]  Markus Gross,et al.  Point-Based Graphics , 2007 .

[11]  Doug L. James,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, SIGGRAPH 2005.

[12]  Marc Alexa,et al.  Point based animation of elastic, plastic and melting objects , 2004, SCA '04.

[13]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, ACM Trans. Graph..

[14]  Doug L. James,et al.  Optimizing cubature for efficient integration of subspace deformations , 2008, SIGGRAPH 2008.

[15]  M. Gross,et al.  Unified simulation of elastic rods, shells, and solids , 2010, SIGGRAPH 2010.

[16]  James F. O'Brien,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH '02.

[17]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[18]  Theodore Kim,et al.  Optimizing cubature for efficient integration of subspace deformations , 2008, SIGGRAPH Asia '08.

[19]  J. Weiss,et al.  Finite element implementation of incompressible, transversely isotropic hyperelasticity , 1996 .

[20]  Dinesh K. Pai,et al.  STRANDS: Interactive Simulation of Thin Solids using Cosserat Models , 2002, Comput. Graph. Forum.

[21]  Jessica K. Hodgins,et al.  Graphical modeling and animation of brittle fracture , 1999, SIGGRAPH.

[22]  M. Teschner,et al.  Meshless deformations based on shape matching , 2005, SIGGRAPH 2005.

[23]  K. Bathe Finite Element Procedures , 1995 .

[24]  Ronald Fedkiw,et al.  Arbitrary cutting of deformable tetrahedralized objects , 2007, SCA '07.

[25]  Markus H. Gross,et al.  Meshless deformations based on shape matching , 2005, ACM Trans. Graph..

[26]  Jérémie Allard,et al.  Image-based collision detection and response between arbitrary volume objects , 2008, SCA '08.

[27]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[28]  H. Matthies,et al.  Classification and Overview of Meshfree Methods , 2004 .

[29]  Markus H. Gross,et al.  Interactive Virtual Materials , 2004, Graphics Interface.

[30]  Daniel Thalmann,et al.  Simulation of object and human skin formations in a grasping task , 1989, SIGGRAPH.

[31]  F. Faure,et al.  Volume contact constraints at arbitrary resolution , 2010, ACM Trans. Graph..

[32]  Hans-Peter Seidel,et al.  Meshless modeling of deformable shapes and their motion , 2008, SCA '08.

[33]  Daniel Thalmann,et al.  Joint-dependent local deformations for hand animation and object grasping , 1989 .

[34]  M. Rubin,et al.  A new 3-D finite element for nonlinear elasticity using the theory of a Cosserat point , 2003 .

[35]  Herve Delingette,et al.  Real-Time Elastic Deformations of Soft Tissues for Surgery Simulation , 1999, IEEE Trans. Vis. Comput. Graph..

[36]  Norman I. Badler,et al.  Animating facial expressions , 1981, SIGGRAPH '81.

[37]  Jirí Zára,et al.  Geometric skinning with approximate dual quaternion blending , 2008, TOGS.

[38]  Jernej Barbic,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[39]  Zexiang Li,et al.  Kinematic control of free rigid bodies using dual quaternions , 2008, Int. J. Autom. Comput..

[40]  Jirí Zára,et al.  Skinning with dual quaternions , 2007, SI3D.

[41]  Markus H. Gross,et al.  A versatile and robust model for geometrically complex deformable solids , 2004, Proceedings Computer Graphics International, 2004..

[42]  Hong Qin,et al.  Dynamic NURBS with geometric constraints for interactive sculpting , 1994, TOGS.

[43]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[44]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2006, Comput. Graph. Forum.