Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method

[1]  Choonkill Park,et al.  M-lump, N-soliton solutions, and the collision phenomena for the (2 + 1)-dimensional Date-Jimbo-Kashiwara-Miwa equation , 2020 .

[2]  Bang-Qing Li,et al.  Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation , 2020, Appl. Math. Comput..

[3]  Yihao Li,et al.  A generalized complex mKdV equation: Darboux transformations and explicit solutions , 2020 .

[4]  H. M. Baskonus,et al.  Investigating lump and its interaction for the third-order evolution equation arising propagation of long waves over shallow water , 2020 .

[5]  Yunqing Yang,et al.  Darboux–Bäcklund transformation, breather and rogue wave solutions for Ablowitz–Ladik equation , 2020 .

[6]  Xue-Wei Yan,et al.  Lax pair, Darboux-dressing transformation and localized waves of the coupled mixed derivative nonlinear Schrödinger equation in a birefringent optical fiber , 2020, Appl. Math. Lett..

[7]  A. Seadawy,et al.  Propagation of isolated waves of coupled nonlinear (2 + 1)-dimensional Maccari System in plasma physics , 2020 .

[8]  Onur Alp Ilhan,et al.  New exact solutions for nematicons in liquid crystals by the $$\tan (\phi /2)$$-expansion method arising in fluid mechanics , 2020 .

[9]  O. H. Khalil,et al.  Propagation of long internal waves in density stratified ocean for the (2+1)-dimensional nonlinear Nizhnik-Novikov-Vesselov dynamical equation , 2020 .

[10]  A. Atangana Fractional discretization: The African’s tortoise walk , 2020 .

[11]  Mohammad Shahriari,et al.  Lump wave solutions and the interaction phenomenon for a variable-coefficient Kadomtsev-Petviashvili equation , 2019, Comput. Math. Appl..

[12]  D. Baleanu,et al.  New analytical wave structures for the (3 + 1)-dimensional Kadomtsev-Petviashvili and the generalized Boussinesq models and their applications , 2019, Results in Physics.

[13]  Behnam Mohammadi-Ivatloo,et al.  Lump-type solutions and interaction phenomenon to the (2+1)-dimensional Breaking Soliton equation , 2019, Appl. Math. Comput..

[14]  Onur Alp Ilhan,et al.  Periodic type and periodic cross-kink wave solutions to the (2 + 1)-dimensional breaking soliton equation arising in fluid dynamics , 2019, Modern Physics Letters B.

[15]  Jing Pang,et al.  Lump and Lump-Type Solutions of the Generalized (3+1)-Dimensional Variable-Coefficient B-Type Kadomtsev-Petviashvili Equation , 2019, J. Appl. Math..

[16]  Wen-Xiu Ma,et al.  New Exact Solutions of Nonlinear (3 + 1)-Dimensional Boiti-Leon-Manna-Pempinelli Equation , 2019, Advances in Mathematical Physics.

[17]  D. Lu,et al.  Construction of modulation instability analysis and optical soliton solutions of pertubed nonlinear Schrödinger dynamical equation with power law nonlinearity in non-kerr medium , 2019, Results in Physics.

[18]  Li Li,et al.  Inverse scattering transformation and soliton stability for a nonlinear Gross-Pitaevskii equation with external potentials , 2019, Appl. Math. Lett..

[19]  Yunqing Yang,et al.  Interaction behavior between solitons and (2+1)-dimensional CDGKS waves , 2019, Wave Motion.

[20]  Wen-Xiu Ma,et al.  Solution of Nonlinear Volterra Integral Equations with Weakly Singular Kernel by Using the HOBW Method , 2019, Advances in Mathematical Physics.

[21]  J. Manafian,et al.  Lump-type solutions and interaction phenomenon to the bidirectional Sawada–Kotera equation , 2019, Pramana.

[22]  Wenxiu Ma,et al.  Abundant Lump-Type Solutions and Interaction Solutions for a Nonlinear (3+1) Dimensional Model , 2018, Advances in Mathematical Physics.

[23]  Dianchen Lu,et al.  Construction of solitary wave solutions to the nonlinear modified Kortewege-de Vries dynamical equation in unmagnetized plasma via mathematical methods , 2018, Modern Physics Letters A.

[24]  Abdon Atangana,et al.  Blind in a commutative world: Simple illustrations with functions and chaotic attractors , 2018, Chaos, Solitons & Fractals.

[25]  Jalil Manafian,et al.  Novel solitary wave solutions for the (3+1)-dimensional extended Jimbo-Miwa equations , 2018, Comput. Math. Appl..

[26]  Runfa Zhang,et al.  Abundant Lump Solutions and Interaction Phenomena to the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony Equation , 2018 .

[27]  Li Zhou,et al.  Multiple soliton solutions for the new (2+1)-dimensional Korteweg-de Vries equation by multiple exp-function method , 2018, Appl. Math. Lett..

[28]  J. Manafian,et al.  Lump solution and its interaction to (3+1)-D potential-YTSF equation , 2018 .

[29]  Aly R. Seadawy,et al.  Dispersive solitary wave solutions of Kadomtsev-Petviashvili and modified Kadomtsev-Petviashvili dynamical equations in unmagnetized dust plasma , 2018 .

[30]  Aly R. Seadawy,et al.  New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod , 2018 .

[31]  Aly R. Seadawy,et al.  Mathematical methods via the nonlinear two-dimensional water waves of Olver dynamical equation and its exact solitary wave solutions , 2018 .

[32]  Abdon Atangana,et al.  Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system , 2017 .

[33]  E. Yaşar,et al.  Multiple exp-function method for soliton solutions of nonlinear evolution equations , 2017 .

[34]  Huanhe Dong,et al.  Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation , 2017, Comput. Math. Appl..

[35]  Aly R. Seadawy,et al.  Mathematical methods and solitary wave solutions of three-dimensional Zakharov-Kuznetsov-Burgers equation in dusty plasma and its applications , 2017 .

[36]  Wen-Xiu Ma,et al.  Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations , 2016 .

[37]  Jingyuan Yang,et al.  Lump solutions to the BKP equation by symbolic computation , 2016 .

[38]  Qing Guan,et al.  Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations , 2016, Comput. Math. Appl..

[39]  Zhenyun Qin,et al.  Lump solutions to dimensionally reduced $$\varvec{p}$$p-gKP and $$\varvec{p}$$p-gBKP equations , 2016 .

[40]  Chuanjian Wang,et al.  Spatiotemporal deformation of lump solution to (2+1)-dimensional KdV equation , 2016 .

[41]  Abdullahi Rashid Adem,et al.  The generalized (1+1)-dimensional and (2+1)-dimensional Ito equations: Multiple exp-function algorithm and multiple wave solutions , 2016, Comput. Math. Appl..

[42]  H. M. Baskonus,et al.  Exponential prototype structures for (2+1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics , 2016 .

[43]  Jalil Manafian,et al.  On the complex structures of the Biswas-Milovic equation for power, parabolic and dual parabolic law nonlinearities , 2015 .

[44]  Jingsong He,et al.  Rational Solutions for the Fokas System , 2015 .

[45]  Wenxiu Ma,et al.  Lump solutions to the Kadomtsev–Petviashvili equation , 2015 .

[46]  The Multiple Exp-Function Method and the Linear Superposition Principle for Solving the (2+1)-Dimensional Calogero–Bogoyavlenskii–Schiff Equation , 2015 .

[47]  Yaning Tang,et al.  Multiple-soliton Solutions for Nonlinear Partial Differential Equations , 2015 .

[48]  J. Manafian,et al.  Optical solitons with Biswas-Milovic equation for Kerr law nonlinearity , 2015 .

[49]  Bo Tian,et al.  Breathers and rogue waves of the fifth-order nonlinear Schrödinger equation in the Heisenberg ferromagnetic spin chain , 2015 .

[50]  Yaning Tang,et al.  New periodic-wave solutions for (2+1)- and (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equations , 2015 .

[51]  Shaolin Li,et al.  Multiple Soliton Solutions for a New Generalization of the Associated Camassa-Holm Equation by Exp-Function Method , 2014 .

[52]  Long Dong,et al.  A New Model for Predicting Dynamic Surge Pressure in Gas and Drilling Mud Two-Phase Flow during Tripping Operations , 2014 .

[53]  Hongcai Ma,et al.  Exact three-wave solutions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation , 2013 .

[54]  Wronskian Determinant Solutions for the (3 + 1)-Dimensional Boiti-Leon-Manna-Pempinelli Equation , 2013 .

[55]  L. Kavitha,et al.  Stair and Step Soliton Solutions of the Integrable (2+1) and (3+1)-Dimensional Boiti—Leon—Manna—Pempinelli Equations , 2012 .

[56]  Wen-Xiu Ma,et al.  Solving the (3 + 1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm , 2012, Appl. Math. Comput..

[57]  Tang Ya-Ning,et al.  Grammian and Pfaffian solutions as well as Pfaffianization for a (3+1)-dimensional generalized shallow water equation , 2012 .

[58]  Abdul-Majid Wazwaz,et al.  Multiple soliton solutions for (2 + 1)‐dimensional Sawada–Kotera and Caudrey–Dodd–Gibbon equations , 2011 .

[59]  M. Dehghan,et al.  ANALYTICAL TREATMENT OF SOME PARTIAL DIFFERENTIAL EQUATIONS ARISING IN MATHEMATICAL PHYSICS BY USING THE Exp-FUNCTION METHOD , 2011 .

[60]  M. Dehghan,et al.  Application of the Exp‐function method for solving a partial differential equation arising in biology and population genetics , 2011 .

[61]  Yang Xiao,et al.  Algebraic-Geometric Solution to (2+1)-Dimensional Sawada–Kotera Equation , 2008 .

[62]  Xianguo Geng,et al.  N-soliton solution and its Wronskian form of a (3+1)-dimensional nonlinear evolution equation , 2007 .

[63]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[64]  Xianguo Geng,et al.  On quasi-periodic solutions of the 2+1 dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada equation , 1999 .

[65]  S. Lou,et al.  Non-local symmetries via Darboux transformations , 1997 .

[66]  Bo Tian,et al.  Beyond travelling waves: a new algorithm for solving nonlinear evolution equations , 1996 .

[67]  A. Ramani,et al.  INVERSE SCATTERING, ORDINARY DIFFERENTIAL EQUATIONS OF PAINLEVÉ‐TYPE, AND HIROTA'S BILINEAR FORMALISM * , 1981 .