Femtosecond laser micromachining of lithium niobate depressed cladding waveguides

We report on the fabrication and characterization of femtosecond laser micromachined depressed cladding waveguides in lithium niobate crystal. The cladding structures support two-dimensional guidance of light from the visible to the mid-infrared spectral regimes. Particularly, single-mode propagation of light at a wavelength of 4 μm has been achieved for the waveguides with diameter of 50 μm. It is also found that the thermal annealing treatment reduces the propagation loss lower than 0.5 dB/cm at 1.064 μm, exhibiting good transmission properties for photonic applications.

[1]  W. Sohler,et al.  Lithium Niobate Ridge Waveguides Fabricated by Wet Etching , 2007, IEEE Photonics Technology Letters.

[2]  Saulius Juodkazis,et al.  Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications , 2009 .

[3]  Lynn D. Hutcheson Integrated optical circuits and components : design and applications , 1987 .

[4]  A. Tünnermann,et al.  Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate , 2008 .

[5]  Feng Chen,et al.  Micro‐ and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications , 2012 .

[6]  Time resolved confocal luminescence investigations on Reverse Proton Exchange Nd:LiNbO(3) channel waveguides. , 2007, Optics express.

[7]  Shi-ning Zhu,et al.  Multiple-channel mid-infrared optical parametric oscillator in periodically poled MgO: LiNbO3 , 2007 .

[8]  Daniel Jaque,et al.  Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing. , 2008, Optics express.

[9]  Daniel Jaque,et al.  Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides , 2008 .

[10]  Andreas Tünnermann,et al.  Origins of waveguiding in femtosecond laser-structured LiNbO3 , 2007 .

[11]  Andreas Tünnermann,et al.  Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform , 2011 .

[12]  J. J. Witcher,et al.  Direct femtosecond laser waveguide writing inside zinc phosphate glass. , 2011, Optics express.

[13]  David D. Nelson,et al.  Simultaneous measurements of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared continuous-wave quantum cascade lasers , 2011 .

[14]  Animesh Jha,et al.  Three-dimensional mid-infrared photonic circuits in chalcogenide glass. , 2012, Optics letters.

[15]  D. Jaque,et al.  Lattice micro-modifications induced by Zn diffusion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal micro-luminescence , 2007 .

[16]  Andrea M Armani,et al.  Low-loss silica-on-silicon waveguides. , 2011, Optics letters.

[17]  Feng Chen,et al.  Mid-infrared waveguide lasers in rare-earth-doped YAG. , 2012, Optics letters.

[18]  Milos Nedeljkovic,et al.  Low loss silicon waveguides for the mid-infrared. , 2011, Optics express.

[19]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[20]  Ari Tervonen,et al.  Ion-exchanged glass waveguide technology: a review , 2011 .

[21]  R. Osellame,et al.  Femtosecond Laser Inscription of Low Insertion Loss Waveguides in $Z$-Cut Lithium Niobate , 2007, IEEE Photonics Technology Letters.

[22]  Feng Chen,et al.  Optical waveguides in crystalline dielectric materials produced by femtosecond‐laser micromachining , 2014 .

[23]  Christos Grivas,et al.  Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques , 2011 .

[24]  Andreas Tünnermann,et al.  Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser , 2009 .

[25]  Koji Sugioka,et al.  Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. , 2008, Optics letters.

[26]  Koji Sugioka,et al.  Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. , 2012, Lab on a chip.

[27]  Andrzej Zajac,et al.  Mid-infrared Q-switched Er:YAG laser for medical applications , 2010 .

[28]  M. Fejer,et al.  Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3. , 2010, Optics letters.

[29]  D Yevick,et al.  Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis. , 1992, Optics letters.

[30]  Changsu Kim,et al.  Progress in Cr 2 + and Fe 2 + doped midIR laser materials , 2009 .

[31]  Feng Chen,et al.  Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance. , 2012, Optics express.

[32]  Igor Moskalev,et al.  Progress in Cr2+ and Fe2+ doped mid‐IR laser materials , 2010 .

[33]  Feng Chen,et al.  Photonic guiding structures in lithium niobate crystals produced by energetic ion beams , 2009 .

[34]  Ian Bennion,et al.  Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses. , 2012, Optics express.