Enhancing Stochastic Search Performance by Value-Biased Randomization of Heuristics

This paper investigates the utility of introducing randomization as a means of boosting the performance of search heuristics. We introduce a particular approach to randomization, called Value-biased stochastic sampling (VBSS), which emphasizes the use of heuristic value in determining stochastic bias. We offer an empirical study of the performance of value-biased and rank-biased approaches to randomizing search heuristics. We also consider the use of these stochastic sampling techniques in conjunction with local hill-climbing. Finally, we contrast the performance of stochastic sampling search with more systematic search procedures as a means of amplifying the performance of search heuristics.

[1]  Stephen F. Smith,et al.  Amplification of Search Performance through Randomization of Heuristics , 2002, CP.

[2]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[3]  Michael Pinedo,et al.  A heuristic to minimize the total weighted tardiness with sequence-dependent setups , 1997 .

[4]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[5]  Vincent A. Cicirello Intelligent Retrieval of Solid Models , 1999 .

[6]  Michael Pinedo,et al.  BPSS: A Scheduling Support System for the Packaging Industry , 1993, Oper. Res..

[7]  John L. Bresina,et al.  Heuristic-Biased Stochastic Sampling , 1996, AAAI/IAAI, Vol. 1.

[8]  Andrew W. Moore,et al.  Using Prediction to Improve Combinatorial Optimization Search , 2007 .

[9]  Mark S. Fox,et al.  Factory Model and Test Data Descriptions: OPIS Experiments , 1990 .

[10]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[11]  Juan M. Sepúlveda,et al.  Chaotic behavior in manufacturing systems , 2006 .

[12]  Bart Selman,et al.  Heavy-Tailed Distributions in Combinatorial Search , 1997, CP.

[13]  Stephen F. Smith,et al.  A Constraint-Based Method for Project Scheduling with Time Windows , 2002, J. Heuristics.

[14]  William C. Regli,et al.  Resolving non-uniqueness in design feature histories , 1999, SMA '99.

[15]  Thomas E. Morton,et al.  Myopic Heuristics for the Single Machine Weighted Tardiness Problem , 1982 .

[16]  S. Prestwich Local Search and Backtracking vs Non-Systematic Backtracking , 2001 .

[17]  Matthew L. Ginsberg,et al.  Limited Discrepancy Search , 1995, IJCAI.

[18]  Stephen F. Smith,et al.  An Iterative Sampling Procedure for Resource Constrained Project Scheduling with Time Windows , 1999, IJCAI.

[19]  Bart Selman,et al.  Systematic Versus Stochastic Constraint Satisfaction , 1995, IJCAI.

[20]  Stephen F. Smith,et al.  Stochastic Procedures for Generating Feasible Schedules , 1997, AAAI/IAAI.

[21]  Toby Walsh Depth-bounded Discrepancy Search , 1997, IJCAI.

[22]  Richard E. Korf,et al.  Improved Limited Discrepancy Search , 1996, AAAI/IAAI, Vol. 1.

[23]  Q. Henry Wu,et al.  Optimization of control parameters in genetic algorithms: a stochastic approach , 1999, Int. J. Syst. Sci..

[24]  Thomas E. Morton,et al.  Heuristic scheduling systems : with applications to production systems and project management , 1993 .

[25]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[26]  Vincent A. Cicirello,et al.  Weighted Tardiness Scheduling with Sequence-Dependent Setups: A Benchmark Library , 2003 .

[27]  Amitava Bagchi,et al.  Graph Search Methods for Non-Order-Preserving Evaluation Functions: Applications to Job Sequencing Problems , 1996, Artif. Intell..

[28]  Bart Selman,et al.  Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.

[29]  Bart Selman,et al.  Heavy-Tailed Phenomena in Satisfiability and Constraint Satisfaction Problems , 2000, Journal of Automated Reasoning.

[30]  William C. Regli,et al.  Machining feature-based comparisons of mechanical parts , 2001, Proceedings International Conference on Shape Modeling and Applications.

[31]  Stephen F. Smith,et al.  Modeling GA Performance for Control Parameter Optimization , 2000, GECCO.

[32]  Bart Selman,et al.  Local search strategies for satisfiability testing , 1993, Cliques, Coloring, and Satisfiability.

[33]  Andrew W. Moore,et al.  Learning Evaluation Functions for Global Optimization and Boolean Satisfiability , 1998, AAAI/IAAI.

[34]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[35]  P. Langley Systematic and nonsystematic search strategies , 1992 .

[36]  William C. Regli,et al.  An approach to a feature-based comparison of solid models of machined parts , 2002, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[37]  Ram Rachamadugu,et al.  Real-time scheduling of an automated manufacturing center * , 1989 .

[38]  L. Darrell Whitley,et al.  Algorithm Performance and Problem Structure for Flow-shop Scheduling , 1999, AAAI/IAAI.

[39]  Andrew W. Moore,et al.  Learning evaluation functions for global optimization , 1998 .