Three Ehrhart quasi-polynomials

Let $P(b)\subset R^d$ be a semi-rational parametric polytope, where $b=(b_j)\in R^N$ is a real multi-parameter. We study intermediate sums of polynomial functions $h(x)$ on $P(b)$, $$ S^L (P(b),h)=\sum_{y}\int_{P(b)\cap (y+L)} h(x) \mathrm dx, $$ where we integrate over the intersections of $P(b)$ with the subspaces parallel to a fixed rational subspace $L$ through all lattice points, and sum the integrals. The purely discrete sum is of course a particular case ($L=0$), so $S^0(P(b), 1)$ counts the integer points in the parametric polytopes. The chambers are the open conical subsets of $R^N$ such that the shape of $P(b)$ does not change when $b$ runs over a chamber. We first prove that on every chamber of $R^N$, $S^L (P(b),h)$ is given by a quasi-polynomial function of $b\in R^N$. A key point of our paper is an analysis of the interplay between two notions of degree on quasi-polynomials: the usual polynomial degree and a filtration, called the local degree. Then, for a fixed $k\leq d$, we consider a particular linear combination of such intermediate weighted sums, which was introduced by Barvinok in order to compute efficiently the $k+1$ highest coefficients of the Ehrhart quasi-polynomial which gives the number of points of a dilated rational polytope. Thus, for each chamber, we obtain a quasi-polynomial function of $b$, which we call Barvinok's patched quasi-polynomial (at codimension level $k$). Finally, for each chamber, we introduce a new quasi-polynomial function of $b$, the cone-by-cone patched quasi-polynomial (at codimension level $k$), defined in a refined way by linear combinations of intermediate generating functions for the cones at vertices of $P(b)$. We prove that both patched quasi-polynomials agree with the discrete weighted sum $b\mapsto S^0(P(b),h)$ in the terms corresponding to the $k+1$ highest polynomial degrees.

[1]  J. D. Loera,et al.  INTERMEDIATE SUMS ON POLYHEDRA II: BIDEGREE AND POISSON FORMULA , 2014, 1404.0065.

[2]  Mark C. Wilson,et al.  Analytic Combinatorics in Several Variables , 2013 .

[3]  M. Henk,et al.  Lattice points in vector-dilated polytopes , 2012, 1204.6142.

[4]  M. Vergne,et al.  Analytic continuation of a parametric polytope and wall-crossing , 2011, 1104.1885.

[5]  Jesús A. De Loera,et al.  Computation of the Highest Coefficients of Weighted Ehrhart Quasi-polynomials of Rational Polyhedra , 2010, Found. Comput. Math..

[6]  A. Bjorner Configuration spaces : geometry, combinatorics and topology , 2012 .

[7]  Eva Linke,et al.  Rational Ehrhart quasi-polynomials , 2010, J. Comb. Theory, Ser. A.

[8]  Jesús A. De Loera,et al.  How to integrate a polynomial over a simplex , 2008, Math. Comput..

[9]  Velleda Baldoni,et al.  Intermediate Sums on Polyhedra: Computation and Real Ehrhart Theory , 2010, ArXiv.

[10]  Matthias Köppe,et al.  Computing Parametric Rational Generating Functions with a Primal Barvinok Algorithm , 2008, Electron. J. Comb..

[11]  Alexander Barvinok,et al.  Integer Points in Polyhedra , 2008 .

[12]  Vincent Loechner,et al.  Counting Integer Points in Parametric Polytopes Using Barvinok's Rational Functions , 2007, Algorithmica.

[13]  A. Barvinok Computing the Ehrhart quasi-polynomial of a rational simplex , 2005, Math. Comput..

[14]  Sven Verdoolaege Incremental Loop Transformations and Enumeration of Parametric Sets (Incrementele lustransformaties en enumeratie van parametrische verzamelingen) , 2005 .

[15]  M. Beck Multidimensional Ehrhart Reciprocity , 2001, J. Comb. Theory, Ser. A.

[16]  T. Tao,et al.  The honeycomb model of _{}(ℂ) tensor products I: Proof of the saturation conjecture , 1999 .

[17]  Terence Tao,et al.  The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture , 1998, math/9807160.

[18]  M. Brion,et al.  Residue formulae, vector partition functions and lattice points in rational polytopes , 1997 .

[19]  Vincent Loechner,et al.  Parametric Analysis of Polyhedral Iteration Spaces , 1996, Proceedings of International Conference on Application Specific Systems, Architectures and Processors: ASAP '96.

[20]  László Lovász,et al.  Linear decision trees, subspace arrangements and Möbius functions , 1994 .

[21]  Alexander I. Barvinok,et al.  A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[22]  William J. Cook,et al.  On integer points in polyhedra , 1992, Comb..

[23]  P. McMullen,et al.  Representations of polytopes and polyhedral sets , 1973 .