Metalloporphyrin anion sensors: the effect of the metal centre on the anion binding properties of amide-functionalised and tetraphenyl metalloporphyrins.

This article describes the synthesis and anion binding properties of a series of 'picket fence' metalloporphyrin complexes, within which the metal centre is systematically varied. The porphyrin structure contains four amide bonds and is the same for each metal. The anion binding properties of these receptors are further contrasted with those of their tetraphenylporphyrin congeners to elucidate both the effect of the metal centre and the influence of the amide groups on the anion recognition process. Anion binding was demonstrated using UV/visible and (1)H NMR spectroscopies, electrochemistry and luminescence. The metal centre was found to be highly influential in the strength and selectivity of binding; for example, the cadmium and mercury complexes exhibited far greater affinities for anions than the zinc complexes in competitive solvents such as DMSO. The amide functionalities were found to enhance the anion binding process.

[1]  Jason J. Davis,et al.  Anion Sensing Porphyrin Functionalized Nanoparticles , 2008 .

[2]  Philip A. Gale,et al.  Anion coordination and anion-templated assembly: Highlights from 2002 to 2004 , 2006 .

[3]  P. Beer,et al.  Sulfate selective anion recognition by a novel tetra-imidazolium zinc metalloporphyrin receptor. , 2006, Dalton transactions.

[4]  K. Bowman-James Alfred Werner revisited: the coordination chemistry of anions. , 2005, Accounts of chemical research.

[5]  Chang-Hee Lee,et al.  Metalloporphyrin-capped calix[4]pyrroles: heteroditopic receptor models for anion recognition and ligand fixation. , 2005, The Journal of organic chemistry.

[6]  C. H. Devillers,et al.  Anion recognition and redox sensing by a metalloporphyrin–ferrocene–alkylammonium conjugate , 2004 .

[7]  M. Gunter,et al.  Amide-appended porphyrins as scaffolds for catenanes, rotaxanes and anion receptors , 2004 .

[8]  P. Richard,et al.  Proline‐Modified Porphyrin Catalysts for Enantioselective Epoxidations: Design, Synthesis, and Reactivity , 2004 .

[9]  Jason J. Davis,et al.  Zinc metalloporphyrin-functionalised nanoparticle anion sensors. , 2004, Chemical communications.

[10]  O. G. Éllert,et al.  Crown compounds for anions. Sandwich complexes of cyclic trimeric perfluoro- o -phenylenemercury with hexacyanoferrate(III) and nitroprusside anions , 2004 .

[11]  Félix Sancenón,et al.  Fluorogenic and chromogenic chemosensors and reagents for anions. , 2003, Chemical reviews.

[12]  J. Reimers,et al.  Synthesis and physical properties of biquinoxalinyl bridged bis-porphyrins: models for aspects of photosynthetic reaction centres. , 2003, Organic & biomolecular chemistry.

[13]  Thawatchai Tuntulani,et al.  Chromogenic anion sensors. , 2003, Chemical Society reviews.

[14]  Philip A. Gale Anion and ion-pair receptor chemistry: highlights from 2000 and 2001 , 2003 .

[15]  P. Beer,et al.  Transition metal and organometallic anion complexation agents , 2003 .

[16]  Kimihisa Yamamoto,et al.  Metal assembly in novel dendrimers with porphyrin cores. , 2003, Journal of the American Chemical Society.

[17]  K. Lang,et al.  Calix[4]arene-porphyrin conjugates as versatile molecular receptors for anions. , 2003, Organic letters.

[18]  S. Starnes,et al.  Anion sensors based on β,β′-disubstituted porphyrin derivatives , 2002 .

[19]  A. Gonsalves,et al.  Heavy-atom effects on metalloporphyrins and polyhalogenated porphyrins , 2002 .

[20]  Jong‐In Hong,et al.  Colorimetric anion sensing by porphyrin-based anion receptors , 2001 .

[21]  A. Horváth,et al.  Five-coordinate complex formation and luminescence quenching study of copper(II) porphyrins , 2001 .

[22]  S. Giraldo,et al.  Olefin oxidation with dioxygen catalyzed by porphyrins and phthalocyanines intercalated in α-zirconium phosphate , 2001 .

[23]  B. Ko,et al.  Mercury complexes of meso-tetra-(p-cyanophenyl)porphyrin and N-methylporphyrin: meso-tetra(p-cyanophenyl)porphyrinatomercury(II) and chloro(N-methyl-meso- tetraphenylporphyrinato)mercury(II). , 2001, Inorganic chemistry.

[24]  T. Swager,et al.  Allosteric Fluoride Anion Recognition by a Doubly Strapped Porphyrin , 2001 .

[25]  Philip A. Gale,et al.  Anion Recognition and Sensing: The State of the Art and Future Perspectives. , 2001, Angewandte Chemie.

[26]  D. Peters,et al.  Suggested Modifications to a Distillation-Free Solvent Purification System , 2001 .

[27]  R. Jagessar,et al.  Neutral Ligands for Selective Chloride Anion Complexation: (α,α,α,α)-5,10,15,20-Tetrakis(2-(arylurea)phenyl)porphyrins , 1998 .

[28]  S. Fukuzumi,et al.  Electron Transfer Mechanism of Organocobalt Porphyrins. Site of Electron Transfer, Migration of Organic Groups, and Cobalt−Carbon Bond Energies in Different Oxidation States , 1998 .

[29]  P. Beer,et al.  Selective anion recognition by novel5,10,15,20-tetrakis(o-ferrocenylcarbonylaminophenyl-substituted)zinc metalloporphyrin receptors , 1997 .

[30]  R. Grubbs,et al.  Safe and Convenient Procedure for Solvent Purification , 1996 .

[31]  V. Shur,et al.  Crown compounds for anions. A polymeric complex of cyclic trimeric perfluoro-o-phenylenemercury with thiocyanate anion containing an infinite helical chain of alternating molecules of mercury-containing macrocycle and SCN− ions , 1996 .

[32]  Kevin M. Smith,et al.  Consequences of Oxidation in Nonplanar Porphyrins: Molecular Structure and Diamagnetism of the .pi. Cation Radical of Copper(II) Octaethyltetraphenylporphyrin , 1994 .

[33]  M. Hynes EQNMR : a computer program for the calculation of stability constants from nuclear magnetic resonance chemical shift data , 1993 .

[34]  Takashi Hayashi,et al.  Pentacoordinate anionic bis(siliconates) containing a fluorine bridge between two silicon atoms. Synthesis, solid-state structures, and dynamic behavior in solution , 1992 .

[35]  P. Beer Transition Metal and Organic Redox-Active Macrocycles Designed to Electrochemically Recognize Charged and Neutral Guest Species , 1992 .

[36]  V. Shur,et al.  Crown compounds for anions. Unusual complex of trimetric perfluoro-o-phenylenemercury with the bromide anion having a polydecker sandwich structure , 1991 .

[37]  A. Hinman,et al.  Influence of anion coordination on potentials for oxidation of the porphyrin ring in tetraphenylporphinatozinc , 1989 .

[38]  M. Newcomb,et al.  Macrocycles containing tin. Solid complexes of anions encrypted in macrobicyclic Lewis acidic hosts , 1989 .

[39]  Wolfgang Kabsch,et al.  Evaluation of Single-Crystal X-ray Diffraction Data from a Position-Sensitive Detector , 1988 .

[40]  N. S. Narasimhan,et al.  An efficient synthesis of (±)-latifine dimethyl ether , 1988 .

[41]  Howard E. Katz 1,8-Naphthalenediylbis(dichloroborane) chloride: the first bis boron chloride chelate , 1987 .

[42]  J. Judice,et al.  Macrocycles Containing Tin. 119Sn NMR Studies of Chloride Binding by Lewis Acidic Tin Compounds. Multidentiate Effects, Macrocyclic Effects and Size Selectivity. , 1985 .

[43]  H. Katz Hydride sponge: 1,8-naphthalenediylbis(dimethylborane) , 1985 .

[44]  J. Wuest,et al.  Multidentate Lewis acids. Halide complexes of 1,2-phenylenedimercury dihalides , 1985 .

[45]  A. Ulman,et al.  ELECTROCHEMISTRY OF NICKEL(II) PORPHYRINS AND CHLORINS , 1984 .

[46]  T. Ozawa,et al.  Absorption Spectral Shift of meso-Tetraphenylpor-phinatocadmium on Axial Ligation , 1983 .

[47]  K. Kadish,et al.  REACTIONS OF METALLOPORPHYRIN Π RADICALS. 3. SOLVENT- AND LIGAND-BINDING EFFECTS ON THE ONE-ELECTRON OXIDATION OF 5,10,15,20-TETRAPHENYLPORPHYRIN-D10 METAL IONS IN NONAQUEOUS MEDIA , 1982 .

[48]  J. Huet,et al.  Structural studies of metalloporphyrins. 7. Proton NMR and electrochemical investigation of the (meso-5,10,15,20-tetraarylporphine)cobalt(III) complexes XCoIII(TPP-p-R) , 1982 .

[49]  H. Goff,et al.  Investigation of axial anionic ligand and porphyrin substituent effects on the oxidation of iron(III) porphyrins: porphyrin-centered vs. metal-centered oxidation , 1981 .

[50]  A. Harriman Luminescence of porphyrins and metalloporphyrins. Part 3.—Heavy-atom effects , 1981 .

[51]  J. Lindsey Increased yield of a desired isomer by equilibriums displacement on binding to silica gel, applied to meso-tetrakis(o-aminophenyl)porphyrin , 1980 .

[52]  Mario Joseph Nappa,et al.  The influence of axial ligands on metalloporphyrin visible absorption spectra. Complexes of tetraphenylporphinatozinc , 1978 .

[53]  Kevin M Smith,et al.  Novel mercury(II) complexes of meso-tetraphenylporphyrin and N-methylporphyrins , 1976 .

[54]  F. R. Longo,et al.  Luminescence studies on several tetraarylporphins and their zinc derivatives , 1975 .

[55]  K. Smith,et al.  Concerning meso- tetraphenylporphyrin purification. , 1975, Journal of the Chemical Society. Perkin transactions 1.

[56]  Kevin M. Smith,et al.  Novel mercury(II) porphyrins - II: Mercury(II) chelates of -tetraphenylporphyrin and N-methylporphyrins , 1974 .

[57]  D. Dolphin,et al.  ESR STUDIES OF PORPHYRIN π‐CATIONS: THE 2A1u and 2A2u STATES * , 1973, Annals of the New York Academy of Sciences.

[58]  F. Kampas,et al.  On the preparation of metalloporphyrins , 1970 .

[59]  D. Dolphin,et al.  pi-Cation radicals and dications of metalloporphyrins. , 1970, Journal of the American Chemical Society.

[60]  M. Gouterman,et al.  Porphyrins XIV. Theory for the luminescent state in VO, Co, Cu complexes , 1969 .

[61]  A. Adler,et al.  A simplified synthesis for meso-tetraphenylporphine , 1967 .

[62]  F. M. Huennekens,et al.  Spectra of the Metallo-derivatives of α,β,γ,δ-Tetraphenylporphine , 1951 .