A Generation Theorem for Groups of finite Morley Rank

We deal with two forms of the "uniqueness cases" in the classification of large simple $K^*$-groups of finite Morley rank of odd type, where large means the $m_2(G)$ at least three. This substantially extends results known for even larger groups having \Prufer 2-rank at least three, to cover the two groups $\PSp_4$ and $\G_2$. With an eye towards distant developments, we carry out this analysis for $L^*$-groups which is substantially broader than the $K^*$ setting.

[1]  G. Cherlin,et al.  Minimal connected simple groups of finite Morley rank with strongly embedded subgroups , 2007, 0711.4165.

[2]  A signalizer functor theorem for groups of finite Morley rank , 2003, math/0308049.

[3]  Meinolf Geck,et al.  Finite groups of Lie type , 1985 .

[4]  A. Borovik,et al.  Uniqueness cases in odd‐type groups of finite Morley rank , 2007, 0711.4167.

[5]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[6]  Alexandre V. Borovik,et al.  Tores et p-Groupes , 1990, J. Symb. Log..

[7]  J. Müller,et al.  Group Theory , 2019, Computers, Rigidity, and Moduli.

[8]  Roger W. Carter,et al.  Finite groups of Lie type: Conjugacy classes and complex characters , 1985 .

[9]  A. Borovik,et al.  Involutions in groups of finite Morley rank of degenerate type , 2007, 0711.4166.

[10]  F. Murnaghan,et al.  LINEAR ALGEBRAIC GROUPS , 2005 .

[11]  A. Borovik Simple Locally Finite Groups of Finite Morley Rank and Odd Type , 1995 .

[12]  H. Gaifman,et al.  Symbolic Logic , 1881, Nature.

[13]  D. Gorenstein,et al.  The Classification of the Finite Simple Groups , 1983 .

[14]  On groups of finite Morley rank of even type , 2003 .

[15]  Ali Nesin Groups of finite Morley rank , 1994 .

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  W. Scott,et al.  Group Theory. , 1964 .

[18]  B. M. Fulk MATH , 1992 .

[19]  R. Tennant Algebra , 1941, Nature.

[20]  D. Gorenstein,et al.  The Classification of the Finite Simple Groups, Number 3 , 1995 .

[21]  A. Borovik,et al.  Simple groups of finite Morley rank , 2008 .

[22]  A. Berkman The Classical Involution Theorem for Groups of Finite Morley Rank , 2001 .

[23]  Gregory L. Cherlin,et al.  On Central Extensions of Algebraic Groups , 1999, J. Symb. Log..

[24]  Oleg V. Belegradek On groups of finite Morley rank , 1987 .

[25]  A. Borovik,et al.  A Generic Identification Theorem for Groups of Finite Morley Rank , 2004, 1111.6037.

[26]  田中 克己,et al.  ω-stable groups , 1988 .

[27]  Strongly Embedded Subgroups of Groups of Odd Type , 1998, math/9811163.

[28]  Bruno Poizat Quelques Modestes Remarques A Propos D'Une Conséquence Inattendue D'Un Résultat Surprenant de Monsieur Frank Olaf Wagner , 2001, J. Symb. Log..

[29]  Signalizers and balance in groups of finite Morley rank , 2007, 0711.4210.

[30]  Gregory L. Cherlin,et al.  Semisimple torsion in Groups of finite Morley Rank , 2009, J. Math. Log..