Graphene plasmonic lens for manipulating energy flow

Manipulating the energy flow of light is at the heart of modern information and communication technologies. Because photons are uncharged, it is still difficult to effectively control them by electrical means. Here, we propose a graphene plasmonic (GP) lens to efficiently manipulate energy flow by elaborately designing the thickness of the dielectric spacer beneath the graphene sheet. Different from traditional metal-based lenses, the proposed graphene plasmonic lens possesses the advantages of tunability and excellent confinement of surface plasmons. It is found that the proposed lens can be utilized to focus and collimate the GP waves propagating along the graphene sheet. Particularly, the lens is dispersionless over a wide frequency range and the performance of lens can be flexibly tuned by adjusting the bias voltage. As an application of such a lens, the image transfer of two point sources with a separation of λ0/30 is demonstrated.

[1]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[2]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[3]  Jing Kong,et al.  Broad electrical tuning of graphene-loaded plasmonic antennas. , 2013, Nano letters.

[4]  Jinghua Teng,et al.  Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays. , 2012, Physical review letters.

[5]  S. Longhi,et al.  Graded index surface-plasmon-polariton devices for subwavelength light management , 2010 .

[6]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[7]  Shoude Chang,et al.  Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging. , 2007, Applied optics.

[8]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[9]  Xueming Liu,et al.  Trapping of surface plasmon waves in graded grating waveguide system , 2012 .

[10]  Xiang Zhang,et al.  Transformational plasmon optics. , 2010, Nano letters.

[11]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[12]  J. Teng,et al.  Optical coupling of surface plasmons between graphene sheets , 2012 .

[13]  Yujie J. Ding,et al.  "Rainbow" trapping and releasing at telecommunication wavelengths. , 2009, Physical review letters.

[14]  Xuefeng Gu,et al.  Extremely confined terahertz surface plasmon-polaritons in graphene-metal structures , 2013 .

[15]  E. W. Marchand,et al.  Gradient Index Optics , 1978 .

[16]  Pierre Berini,et al.  Amplification of long-range surface plasmons by a dipolar gain medium , 2010 .

[17]  F. Xia,et al.  Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.

[18]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[19]  J. Perruisseau-Carrier,et al.  Design of tunable biperiodic graphene metasurfaces , 2012, 1210.5611.

[20]  Govind P. Agrawal,et al.  Applications of Nonlinear Fiber Optics , 2001 .

[21]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[22]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[23]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[24]  F. Xia,et al.  Plasmonics of coupled graphene micro-structures , 2012, 1205.6841.

[25]  Qianfan Xu,et al.  Excitation of plasmonic waves in graphene by guided-mode resonances. , 2012, ACS nano.

[26]  J. Kinaret,et al.  Edge magnetoplasmons and the optical excitations in graphene disks , 2012 .

[27]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[28]  Xiang Zhang,et al.  Plasmonic Luneburg and Eaton lenses. , 2011, Nature nanotechnology.

[29]  P. Ajayan,et al.  Gated tunability and hybridization of localized plasmons in nanostructured graphene. , 2013, ACS nano.

[30]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[31]  Juan Sebastian Gómez Díaz,et al.  Reconfigurable THz Plasmonic Antenna Concept Using a Graphene Stack , 2012, 1210.8057.

[32]  A. Lavrinenko,et al.  Graphene hyperlens for terahertz radiation , 2012, 1209.3951.

[33]  Xiang Zhang,et al.  Switching terahertz waves with gate-controlled active graphene metamaterials. , 2012, Nature materials.

[34]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[35]  A. Alú,et al.  Atomically thin surface cloak using graphene monolayers. , 2011, ACS nano.

[36]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[37]  G. Hanson Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene , 2007, cond-mat/0701205.

[38]  Choon How Gan,et al.  Synthesis of highly confined surface plasmon modes with doped graphene sheets in the mid-infrared and terahertz frequencies , 2012, 1203.4308.

[39]  Kai Liu,et al.  Rainbow Trapping in Hyperbolic Metamaterial Waveguide , 2013, Scientific Reports.

[40]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.