Journal of Computational and Applied Mathematics Projected Equation Methods for Approximate Solution of Large Linear Systems

[1]  Dimitri P. Bertsekas,et al.  Convergence Results for Some Temporal Difference Methods Based on Least Squares , 2009, IEEE Transactions on Automatic Control.

[2]  Dimitri P. Bertsekas,et al.  Neuro-Dynamic Programming , 2009, Encyclopedia of Optimization.

[3]  Vivek S. Borkar,et al.  A Learning Algorithm for Risk-Sensitive Cost , 2008, Math. Oper. Res..

[4]  Lihong Li,et al.  Analyzing feature generation for value-function approximation , 2007, ICML '07.

[5]  D. Bertsekas,et al.  A Least Squares Q-Learning Algorithm for Optimal Stopping Problems , 2007 .

[6]  Mario J. Valenti Approximate dynamic programming with applications in multi-agent systems , 2007 .

[7]  D. Bertsekas,et al.  Solution of Large Systems of Equations Using Approximate Dynamic Programming Methods , 2007 .

[8]  Shie Mannor,et al.  Automatic basis function construction for approximate dynamic programming and reinforcement learning , 2006, ICML.

[9]  David Choi,et al.  A Generalized Kalman Filter for Fixed Point Approximation and Efficient Temporal-Difference Learning , 2001, Discret. Event Dyn. Syst..

[10]  Shie Mannor,et al.  Basis Function Adaptation in Temporal Difference Reinforcement Learning , 2005, Ann. Oper. Res..

[11]  Richard S. Sutton,et al.  Learning to predict by the methods of temporal differences , 1988, Machine Learning.

[12]  Andrew G. Barto,et al.  Linear Least-Squares Algorithms for Temporal Difference Learning , 2005, Machine Learning.

[13]  Justin A. Boyan,et al.  Technical Update: Least-Squares Temporal Difference Learning , 2002, Machine Learning.

[14]  A. Barto,et al.  Improved Temporal Difference Methods with Linear Function Approximation , 2004 .

[15]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[16]  Dimitri P. Bertsekas,et al.  Least Squares Policy Evaluation Algorithms with Linear Function Approximation , 2003, Discret. Event Dyn. Syst..

[17]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[18]  John N. Tsitsiklis,et al.  Optimal stopping of Markov processes: Hilbert space theory, approximation algorithms, and an application to pricing high-dimensional financial derivatives , 1999, IEEE Trans. Autom. Control..

[19]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[20]  Richard S. Sutton,et al.  Dimensions of Reinforcement Learning , 1998 .

[21]  John N. Tsitsiklis,et al.  Average cost temporal-difference learning , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[22]  Dimitri P. Bertsekas,et al.  Temporal Dierences-Based Policy Iteration and Applications in Neuro-Dynamic Programming 1 , 1997 .

[23]  John N. Tsitsiklis,et al.  Analysis of temporal-difference learning with function approximation , 1996, NIPS 1996.

[24]  S. Ioffe,et al.  Temporal Differences-Based Policy Iteration and Applications in Neuro-Dynamic Programming , 1996 .

[25]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[26]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[27]  Andrew G. Barto,et al.  Monte Carlo Matrix Inversion and Reinforcement Learning , 1993, NIPS.

[28]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[29]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Vol. II , 1976 .

[30]  J. Halton A Retrospective and Prospective Survey of the Monte Carlo Method , 1970 .

[31]  S. Vajda,et al.  Symposium on Monte Carlo Methods , 1957, The Mathematical Gazette.

[32]  W. Wasow A note on the inversion of matrices by random walks , 1952 .

[33]  R. A. Leibler,et al.  Matrix inversion by a Monte Carlo method , 1950 .