Refrigeration beyond weak internal coupling.

We investigate the performance of a three-spin quantum absorption refrigerator using a refined open quantum system model valid across all interspin coupling strengths. It describes the transition between previous approximate models for the weak and the ultrastrong coupling limit, and it predicts optimal refrigeration for moderately strong coupling, where both approximations are inaccurate. Two effects impede a more effective cooling: the coupling between the spins no longer reduces to a simple resonant energy exchange (the rotating wave approximation fails), and the interactions with the thermal baths become sensitive to the level splitting, thus opening additional heat channels between the reservoirs. We identify the modified conditions of refrigeration as a function of the interspin coupling strength, and we show that, contrary to intuition, a high-temperature work reservoir thwarts refrigeration in the strong coupling regime.

[1]  Jacob M. Taylor,et al.  An autonomous single-piston engine with a quantum rotor , 2018, Quantum Science and Technology.

[2]  Valerio Scarani,et al.  Work production of quantum rotor engines , 2018, 1801.02820.

[3]  V. Scarani,et al.  Quantum and classical dynamics of a three-mode absorption refrigerator , 2017, 1709.08353.

[4]  D. Segal,et al.  Qubit absorption refrigerator at strong coupling , 2017, 1709.02835.

[5]  C. Wilson,et al.  Quantum heat engine with coupled superconducting resonators. , 2017, Physical review. E.

[6]  G'eraldine Haack,et al.  Markovian master equations for quantum thermal machines: local versus global approach , 2017, 1707.09211.

[7]  Gerardo Adesso,et al.  Testing the Validity of the 'Local' and 'Global' GKLS Master Equations on an Exactly Solvable Model , 2017, Open Syst. Inf. Dyn..

[8]  Michele Campisi,et al.  High-Power Collective Charging of a Solid-State Quantum Battery. , 2017, Physical review letters.

[9]  Kavan Modi,et al.  Enhancing the Charging Power of Quantum Batteries. , 2016, Physical review letters.

[10]  Juan Miguel Arrazola,et al.  Autonomous rotor heat engine. , 2016, Physical review. E.

[11]  Ronnie Kosloff,et al.  Quantum Flywheel , 2016, 1602.04322.

[12]  J. Rossnagel,et al.  A single-atom heat engine , 2015, Science.

[13]  Jonatan Bohr Brask,et al.  Small quantum absorption refrigerator in the transient regime: Time scales, enhanced cooling, and entanglement. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Javier Prior,et al.  Coherence-assisted single-shot cooling by quantum absorption refrigerators , 2015, 1504.01593.

[15]  Kavan Modi,et al.  Quantacell: powerful charging of quantum batteries , 2015, 1503.07005.

[16]  Vittorio Giovannetti,et al.  Quantum optomechanical piston engines powered by heat , 2014, 1407.8364.

[17]  Ronnie Kosloff,et al.  The local approach to quantum transport may violate the second law of thermodynamics , 2014, 1402.3825.

[18]  Gerardo Adesso,et al.  Quantum-enhanced absorption refrigerators , 2013, Scientific Reports.

[19]  Paul Skrzypczyk,et al.  Entanglement enhances cooling in microscopic quantum refrigerators. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Gerardo Adesso,et al.  Performance bound for quantum absorption refrigerators. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  S. Huelga,et al.  Open Quantum Systems: An Introduction , 2011 .

[22]  Ronnie Kosloff,et al.  Quantum absorption refrigerator. , 2011, Physical review letters.

[23]  J. Gambetta,et al.  Dissipation and ultrastrong coupling in circuit QED , 2011, 1107.3990.

[24]  Paul Skrzypczyk,et al.  The smallest refrigerators can reach maximal efficiency , 2010, 1009.0865.

[25]  Susana F. Huelga,et al.  Markovian master equations: a critical study , 2010, 1006.4666.

[26]  E Solano,et al.  Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. , 2010, Physical review letters.

[27]  Paul Skrzypczyk,et al.  How small can thermal machines be? The smallest possible refrigerator. , 2009, Physical review letters.

[28]  David Zueco,et al.  Qubit-oscillator dynamics in the dispersive regime: Analytical theory beyond the rotating-wave approximation , 2009, 0907.3516.

[29]  M. Martin-Delgado,et al.  Competing many-body interactions in systems of trapped ions , 2008, 0812.3812.

[30]  T. Brandes,et al.  Systematic perturbation theory for dynamical coarse-graining , 2008, 0812.1507.

[31]  T. Brandes,et al.  Preservation of positivity by dynamical coarse graining , 2008, 0804.2374.

[32]  J. Piilo,et al.  Cavity losses for the dissipative Jaynes–Cummings Hamiltonian beyond rotating wave approximation , 2007, 0709.1614.

[33]  E. K. Irish,et al.  Generalized rotating-wave approximation for arbitrarily large coupling. , 2007, Physical review letters.

[34]  J. Schmiedmayer,et al.  Ultracold atoms in radio-frequency dressed potentials beyond the rotating-wave approximation , 2006, quant-ph/0611240.

[35]  Friedemann Tonner,et al.  Autonomous quantum thermodynamic machines. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  M. Plenio,et al.  Three-spin interactions in optical lattices and criticality in cluster Hamiltonians. , 2004, Physical review letters.

[37]  Timo O. Reiss,et al.  Broadband geodesic pulses for three spin systems: time-optimal realization of effective trilinear coupling terms and indirect SWAP gates. , 2003, Journal of magnetic resonance.

[38]  Ronnie Kosloff,et al.  A quantum mechanical open system as a model of a heat engine , 1984 .

[39]  Robert Alicki,et al.  The quantum open system as a model of the heat engine , 1979 .

[40]  E. O. Schulz-DuBois,et al.  Three-Level Masers as Heat Engines , 1959 .

[41]  W. Marsden I and J , 2012 .

[42]  Sandu Popescu The Smallest Thermal Machines , 2012 .

[43]  G. Mahler,et al.  Quantum heat engine: A fully quantized model , 2010 .