Hamiltonian Monte Carlo using an adjoint-differentiated Laplace approximation: Bayesian inference for latent Gaussian models and beyond
暂无分享,去创建一个
[1] Virgilio Gómez-Rubio,et al. Markov chain Monte Carlo with the Integrated Nested Laplace Approximation , 2017, Stat. Comput..
[2] Dustin Tran,et al. TensorFlow Distributions , 2017, ArXiv.
[3] James G. Scott,et al. The horseshoe estimator for sparse signals , 2010 .
[4] Bob Carpenter,et al. The Stan Math Library: Reverse-Mode Automatic Differentiation in C++ , 2015, ArXiv.
[5] Tamara Broderick,et al. The Kernel Interaction Trick: Fast Bayesian Discovery of Pairwise Interactions in High Dimensions , 2019, ICML.
[6] M. Betancourt,et al. Optimizing The Integrator Step Size for Hamiltonian Monte Carlo , 2014, 1411.6669.
[7] Anders Nielsen,et al. TMB: Automatic Differentiation and Laplace Approximation , 2015, 1509.00660.
[8] Ben Calderhead,et al. Riemannian Manifold Hamiltonian Monte Carlo , 2009, 0907.1100.
[9] Ole Winther,et al. Bayesian Leave-One-Out Cross-Validation Approximations for Gaussian Latent Variable Models , 2014, J. Mach. Learn. Res..
[10] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[11] J. Vanhatalo,et al. Approximate inference for disease mapping with sparse Gaussian processes , 2010, Statistics in medicine.
[12] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[13] Arthur Stanley,et al. Yes , 1923, The Hospital and health review.
[14] Trevor Campbell,et al. Validated Variational Inference via Practical Posterior Error Bounds , 2019, AISTATS.
[15] Aki Vehtari,et al. GPstuff: Bayesian modeling with Gaussian processes , 2013, J. Mach. Learn. Res..
[16] David M. Blei,et al. Variational Inference: A Review for Statisticians , 2016, ArXiv.
[17] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[18] Carl E. Rasmussen,et al. Assessing Approximate Inference for Binary Gaussian Process Classification , 2005, J. Mach. Learn. Res..
[19] Michael Betancourt,et al. A General Metric for Riemannian Manifold Hamiltonian Monte Carlo , 2012, GSI.
[20] Michael Betancourt,et al. A Conceptual Introduction to Hamiltonian Monte Carlo , 2017, 1701.02434.
[21] R. Errico. What is an adjoint model , 1997 .
[22] L. Tierney,et al. Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .
[23] Radford M. Neal. Slice Sampling , 2003, The Annals of Statistics.
[24] H. Rue,et al. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .
[25] S. Martino. Approximate Bayesian Inference for Latent Gaussian Models , 2007 .
[26] Kasper Kristensen,et al. No-U-turn sampling for fast Bayesian inference in ADMB and TMB: Introducing the adnuts and tmbstan R packages , 2018, PloS one.
[27] M. Betancourt,et al. The Geometric Foundations of Hamiltonian Monte Carlo , 2014, 1410.5110.
[28] Andrew Gordon Wilson,et al. GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration , 2018, NeurIPS.
[29] Jiqiang Guo,et al. Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.
[30] Aki Vehtari,et al. Sparsity information and regularization in the horseshoe and other shrinkage priors , 2017, 1707.01694.
[31] Yichuan Zhang,et al. Semi-Separable Hamiltonian Monte Carlo for Inference in Bayesian Hierarchical Models , 2014, NIPS.
[32] Aki Vehtari,et al. Rank-Normalization, Folding, and Localization: An Improved Rˆ for Assessing Convergence of MCMC (with Discussion) , 2019, Bayesian Analysis.
[33] Dustin Tran,et al. Automatic Differentiation Variational Inference , 2016, J. Mach. Learn. Res..
[34] Tom Heskes,et al. Approximate Marginals in Latent Gaussian Models , 2011, J. Mach. Learn. Res..
[35] Sean Gerrish,et al. Black Box Variational Inference , 2013, AISTATS.
[36] James V. Burke,et al. Algorithmic Differentiation of Implicit Functions and Optimal Values , 2008 .
[37] Barak A. Pearlmutter,et al. Automatic differentiation in machine learning: a survey , 2015, J. Mach. Learn. Res..
[38] A. Gelman,et al. Pareto Smoothed Importance Sampling , 2015, 1507.02646.
[39] John Salvatier,et al. Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..
[40] R. Reynolds,et al. Bulletin of the American Meteorological Society , 1996 .
[41] Haavard Rue,et al. Bayesian Computing with INLA: A Review , 2016, 1604.00860.
[42] Michael Betancourt,et al. A Geometric Theory of Higher-Order Automatic Differentiation , 2018, 1812.11592.
[43] M. Betancourt,et al. Hamiltonian Monte Carlo for Hierarchical Models , 2013, 1312.0906.
[44] Aki Vehtari,et al. Validating Bayesian Inference Algorithms with Simulation-Based Calibration , 2018, 1804.06788.
[45] Aki Vehtari,et al. Yes, but Did It Work?: Evaluating Variational Inference , 2018, ICML.
[46] Charles C. Margossian,et al. A review of automatic differentiation and its efficient implementation , 2018, WIREs Data Mining Knowl. Discov..