Criteria of ergodicity for p-adic dynamical systems in terms of coordinate functions

Abstract This paper is devoted to the problem of ergodicity of p-adic dynamical systems. We solved the problem of characterization of ergodicity and measure preserving for (discrete) p-adic dynamical systems for arbitrary prime p for iterations based on 1-Lipschitz functions. This problem was open since long time and only the case p = 2 was investigated in details. We formulated the criteria of ergodicity and measure preserving in terms of coordinate functions corresponding to digits in the canonical expansion of p-adic numbers. (The coordinate representation can be useful, e.g., for applications to cryptography.) Moreover, by using this representation we can consider non-smooth p-adic transformations. The basic technical tools are van der Put series and usage of algebraic structure (permutations) induced by coordinate functions with partially frozen variables. We illustrate the basic theorems by presenting concrete classes of ergodic functions. As is well known, p-adic spaces have the fractal (although very special) structure. Hence, our study covers a large class of dynamical systems on fractals. Dynamical systems under investigation combine simplicity of the algebraic dynamical structure with very high complexity of behavior.

[1]  J. Rivera-Letelier Espace hyperbolique p-adique et dynamique des fonctions rationnelles , 2003, Compositio Mathematica.

[2]  Dynamique des fonctions rationelles sur des corps locaux , 2000 .

[3]  Andrei Khrennikov,et al.  Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models , 2011 .

[4]  Vladimir Anashin,et al.  Ergodic Transformations in the Space of p‐Adic Integers , 2006, math/0602083.

[5]  Components and Periodic Points in Non‐Archimedean Dynamics , 2002 .

[6]  Robert L. Benedetto,et al.  Hyperbolic maps in p-adic dynamics , 2001, Ergodic Theory and Dynamical Systems.

[7]  Franco Vivaldi,et al.  Pseudo-Randomness of Round-Off Errors in Discretized Linear Maps on the Plane , 2003, Int. J. Bifurc. Chaos.

[8]  S. V. Kozyrev,et al.  On p-adic mathematical physics , 2006, 0904.4205.

[9]  Jia-Yan Yao,et al.  Strict ergodicity of affine p-adic dynamical systems on Zp , 2007 .

[10]  Andrei Khrennikov,et al.  P-Adic Dynamical Systems , 2004 .

[11]  W. H. Schikhof Ultrametric Calculus: An Introduction to p-Adic Analysis , 1984 .

[12]  On Ergodic Behavior of p-adic dynamical systems , 2001, 0806.0260.

[13]  Ekaterina Yurova,et al.  Criteria of measure-preserving for p-adic dynamical systems in terms of the van der Put basis , 2012 .

[14]  Ekaterina Yurova Van der Put basis and p-adic dynamics , 2010 .

[15]  J. Silverman The Arithmetic of Dynamical Systems , 2007 .

[16]  Marcus Nilsson,et al.  P-adic Deterministic and Random Dynamics , 2004 .

[18]  David K. Arrowsmith,et al.  Some p-adic representations of the Smale horseshoe , 1993 .

[19]  A. Khrennikov,et al.  Behaviour of Hensel perturbations of p-adic monomial dynamical systems , 2003 .

[20]  Karl-Olof Lindahl On Siegel's linearization theorem for fields of prime characteristic , 2004 .

[21]  A Yu Khrennikov,et al.  2-Adic clustering of the PAM matrix. , 2009, Journal of theoretical biology.

[22]  V. S. Anachin Uniformly distributed sequences ofp-adic integers , 1994 .

[23]  p-adic repellers in Qp are subshifts of finite type , 2007 .

[24]  A. Khrennikov,et al.  2-Adic numbers in genetics and Rumer’s symmetry , 2010 .

[25]  M. E. Naschie P-Adic unification of the fundamental forces and the standard model , 2008 .

[26]  Andrei Khrennikov,et al.  ATTRACTORS OF RANDOM DYNAMICAL SYSTEMS OVER P-ADIC NUMBERS AND A MODEL OF 'NOISY' COGNITIVE PROCESSES , 1999 .

[27]  Vladimir Anashin,et al.  Uniformly distributed sequences of p-adic integers, II , 2002, math/0209407.

[28]  Youssef Fares,et al.  Minimal dynamical systems on a discrete valuation domain , 2009 .

[29]  W. Parry,et al.  ERGODICITY OF p-ADIC MULTIPLICATIONS AND THE DISTRIBUTION OF FIBONACCI NUMBERS , 2001 .

[30]  M. Van Der Put Algébres de Fonctions Continues p-Adiques. II , 1968 .

[31]  A. Khrennikov Gene expression from 2-adic dynamical systems , 2009 .

[32]  S. V. Kozyrev,et al.  Genetic code on the diadic plane , 2007, q-bio/0701007.

[33]  Andrei Khrennikov,et al.  T-functions revisited: new criteria for bijectivity/transitivity , 2014, Des. Codes Cryptogr..

[34]  Vladimir Anashin,et al.  Characterization of ergodicity of p-adic dynamical systems by using the van der Put basis , 2011 .

[35]  Robert L. Benedetto p-Adic Dynamics and Sullivan's No Wandering Domains Theorem , 2000, Compositio Mathematica.

[36]  Franco Vivaldi,et al.  The Arithmetic of Discretized Rotations , 2006 .

[37]  A Khrennikov,et al.  Human subconscious as a p-adic dynamical system. , 1998, Journal of theoretical biology.

[38]  Andrei Khrennikov,et al.  Gene expression from polynomial dynamics in the 2-adic information space , 2006, q-bio/0611068.

[39]  Andrei Khrennikov,et al.  Applied Algebraic Dynamics , 2009 .

[40]  S Albeverio,et al.  Memory retrieval as a p-adic dynamical system. , 1999, Bio Systems.

[41]  p-adic affine dynamical systems and applications , 2006 .

[42]  Ekaterina Yurova On measure-preserving functions over ℤ3 , 2012 .

[43]  Per-Anders Svensson,et al.  Attracting fixed points of polynomial dynamical systems in fields of?$ p$-adic numbers , 2007 .

[44]  D. Arrowsmith,et al.  Geometry of p -adic Siegel discs , 1994 .

[45]  A. Khrennikov,et al.  Ergodicity of dynamical systems on 2-adic spheres , 2012 .

[46]  K. Mahler p-adic numbers and their functions , 1981 .

[47]  Sergio Albeverio,et al.  p-adic dynamic systems , 1998 .