Schubert Polynomials in Types A and C
暂无分享,去创建一个
[1] Ezra Miller,et al. Gröbner geometry of Schubert polynomials , 2001 .
[2] Sergey Fomin,et al. Balanced Labellings and Schubert Polynomials , 1997, Eur. J. Comb..
[3] Thomas Lam,et al. Back stable Schubert calculus , 2018, Compositio Mathematica.
[4] Brendan Pawlowski,et al. UNIVERSAL GRAPH SCHUBERT VARIETIES , 2019, Transformation Groups.
[5] Sara Billey,et al. Schubert polynomials for the classical groups , 1995 .
[6] Harry Tamvakis,et al. A Giambelli formula for isotropic Grassmannians , 2008, 0811.2781.
[7] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[8] W. Fulton,et al. Vexillary signed permutations revisited , 2018, 1806.01230.
[9] Michelle L. Wachs,et al. Flagged Schur Functions, Schubert Polynomials, and Symmetrizing Operators , 1985, J. Comb. Theory, Ser. A.
[10] W. Fulton,et al. Chern class formulas for classical-type degeneracy loci , 2015, Compositio Mathematica.
[11] Johan P. Hansen,et al. INTERSECTION THEORY , 2011 .
[12] Anders Skovsted Buch. A Littlewood-Richardson rule for theK-theory of Grassmannians , 2000 .
[13] T. Ikeda,et al. Double Schubert polynomials for the classical groups , 2008, 0810.1348.
[14] Piotr Pragacz,et al. Enumerative geometry of degeneracy loci , 1988 .
[15] Seung Jin Lee,et al. On the coproduct in affine Schubert calculus , 2019, 1906.08118.
[16] Skew Schubert polynomials , 2002, math/0202090.
[17] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[18] Sara Billey,et al. Vexillary Elements in the Hyperoctahedral Group , 1998 .
[19] William Fulton,et al. Flags, Schubert polynomials, degeneracy loci, and determinantal formulas , 1992 .
[20] A. Arabia. Cohomologie T-équivariante de la variété de drapeaux d'un groupe de Kač-Moody , 1989 .
[21] I. G. MacDonald,et al. Notes on Schubert polynomials , 1991 .
[22] Sara C. Billey. Transition equations for isotropic flag manifolds , 1998, Discret. Math..
[23] William Fulton,et al. Identities for Schur-type determinants and pfaffians , 2021, 2103.16505.
[24] Richard P. Stanley,et al. Some Combinatorial Properties of Schubert Polynomials , 1993 .
[25] H. H. Andersen,et al. Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p : independence of p , 1994 .
[26] S. Billey,et al. Kostant polynomials and the cohomology ring for G/B. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[27] D. Laksov,et al. The determinantal formula of Schubert calculus , 1974 .