Schubert Polynomials in Types A and C

Enriched versions of type A Schubert polynomials are constructed with coefficients in a polynomial ring in variables c1, c2, . . .. Specializing these variables to 0 recovers the double Schubert polynomials of Lascoux and Schützenberger; specializing them to certain power series recovers the back-stable double Schubert polynomials of Lam, Lee, and Shimozono; specializing them to Schur Q-polynomials relates them to the type C double Schubert polynomials of Ikeda, Mihalcea, and Naruse. Many formulas for classical Schubert polynomials generalize to this setting. They give, and are characterized by, formulas for degeneracy loci.

[1]  Ezra Miller,et al.  Gröbner geometry of Schubert polynomials , 2001 .

[2]  Sergey Fomin,et al.  Balanced Labellings and Schubert Polynomials , 1997, Eur. J. Comb..

[3]  Thomas Lam,et al.  Back stable Schubert calculus , 2018, Compositio Mathematica.

[4]  Brendan Pawlowski,et al.  UNIVERSAL GRAPH SCHUBERT VARIETIES , 2019, Transformation Groups.

[5]  Sara Billey,et al.  Schubert polynomials for the classical groups , 1995 .

[6]  Harry Tamvakis,et al.  A Giambelli formula for isotropic Grassmannians , 2008, 0811.2781.

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  W. Fulton,et al.  Vexillary signed permutations revisited , 2018, 1806.01230.

[9]  Michelle L. Wachs,et al.  Flagged Schur Functions, Schubert Polynomials, and Symmetrizing Operators , 1985, J. Comb. Theory, Ser. A.

[10]  W. Fulton,et al.  Chern class formulas for classical-type degeneracy loci , 2015, Compositio Mathematica.

[11]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[12]  Anders Skovsted Buch A Littlewood-Richardson rule for theK-theory of Grassmannians , 2000 .

[13]  T. Ikeda,et al.  Double Schubert polynomials for the classical groups , 2008, 0810.1348.

[14]  Piotr Pragacz,et al.  Enumerative geometry of degeneracy loci , 1988 .

[15]  Seung Jin Lee,et al.  On the coproduct in affine Schubert calculus , 2019, 1906.08118.

[16]  Skew Schubert polynomials , 2002, math/0202090.

[17]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[18]  Sara Billey,et al.  Vexillary Elements in the Hyperoctahedral Group , 1998 .

[19]  William Fulton,et al.  Flags, Schubert polynomials, degeneracy loci, and determinantal formulas , 1992 .

[20]  A. Arabia Cohomologie T-équivariante de la variété de drapeaux d'un groupe de Kač-Moody , 1989 .

[21]  I. G. MacDonald,et al.  Notes on Schubert polynomials , 1991 .

[22]  Sara C. Billey Transition equations for isotropic flag manifolds , 1998, Discret. Math..

[23]  William Fulton,et al.  Identities for Schur-type determinants and pfaffians , 2021, 2103.16505.

[24]  Richard P. Stanley,et al.  Some Combinatorial Properties of Schubert Polynomials , 1993 .

[25]  H. H. Andersen,et al.  Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p : independence of p , 1994 .

[26]  S. Billey,et al.  Kostant polynomials and the cohomology ring for G/B. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[27]  D. Laksov,et al.  The determinantal formula of Schubert calculus , 1974 .