Notes on integral performance indices in fractional-order control systems

Abstract Integral performance indices as quantitative measures of the performance of a system are commonly used to evaluate the performance of designed control systems. In this paper, it is pointed out that due to existence of non-exponential modes in the step response of a fractional-order control system having zero steady state error, integral performance indices of such a system may be infinite. According to this point, some simple conditions are derived to guarantee the finiteness of different integral performance indices in a class of fractional-order control systems. Finally, some numerical examples are presented to show the applicability of the analytical achievements of the paper.

[1]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  T. Hartley,et al.  A Frequency-Domain Approach to Optimal Fractional-Order Damping , 2004 .

[3]  Concepción A. Monje,et al.  Tip position control of a lightweight flexible manipulator using a fractional order controller , 2007 .

[4]  Dingyu Xue,et al.  Optimal Fractional Order Proportional Integral Controller for Varying Time-Delay Systems , 2008 .

[5]  Mohammad Saleh Tavazoei,et al.  Some Applications of Fractional Calculus in Suppression of Chaotic Oscillations , 2008, IEEE Transactions on Industrial Electronics.

[6]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[7]  Alain Oustaloup,et al.  Synthesis of fractional Laguerre basis for system approximation , 2007, Autom..

[8]  YangQuan Chen,et al.  Tuning and auto-tuning of fractional order controllers for industry applications , 2008 .

[9]  I. S. Jesus,et al.  Fractional control of heat diffusion systems , 2008 .

[10]  Serdar Ethem Hamamci Stabilization using fractional-order PI and PID controllers , 2007 .

[11]  Bing-Gang Cao,et al.  Design of Fractional Order Controller Based on Particle Swarm Optimization , 2006 .

[12]  Francesco Mainardi,et al.  On Mittag-Leffler-type functions in fractional evolution processes , 2000 .

[13]  Mohammad Saleh Tavazoei,et al.  Fractional controller to stabilize fixed points of uncertain chaotic systems: Theoretical and experimental study , 2008 .

[14]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[15]  Vicente Feliú Batlle,et al.  Optimal Fractional Controllers for Rational Order Systems: A Special Case of the Wiener-Hopf Spectral Factorization Method , 2007, IEEE Transactions on Automatic Control.

[16]  Y. Q. Chen,et al.  Using Fractional Order Adjustment Rules and Fractional Order Reference Models in Model-Reference Adaptive Control , 2002 .

[17]  Anissa Zergaïnoh-Mokraoui,et al.  State-space representation for fractional order controllers , 2000, Autom..

[18]  I. Podlubny Fractional differential equations , 1998 .

[19]  J. Partington,et al.  Coprime factorizations and stability of fractional differential systems , 2000 .

[20]  Vicente Feliu-Batlle,et al.  Fractional robust control of main irrigation canals with variable dynamic parameters , 2007 .

[21]  J. Sabatier,et al.  The CRONE aproach: Theoretical developments and major applications , 2006 .

[22]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[23]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .